切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2022, Vol. 08 ›› Issue (06) : 350 -360. doi: 10.3877/cma.j.issn.2096-0263.2022.06.006

所属专题: 骨科学

骨质疏松

骨质疏松骨折临床预测模型的建立与评价
王燕1, 李文静1, 吕红芝1, 李晶2, 王娟1, 任川1, 张英泽1,()   
  1. 1. 050051 石家庄,河北省骨科研究所,河北省骨科生物力学重点实验室,河北医科大学第三医院创伤急救中心
    2. 河北医科大学第三医院统计室
  • 收稿日期:2022-06-30 出版日期:2022-12-05
  • 通信作者: 张英泽
  • 基金资助:
    河北省2021年度医学科学研究课题(20210552)

Establishment and Evaluation of Clinical Predictive Model for Osteoporotic fracture

Yan Wang1, Wenjing Li1, Hongzhi Lyu1, Jing Li2, Juan Wang1, Chuan Ren1, Yingze Zhang1,()   

  1. 1. Hebei Orthopaedic Research Institute, Department of Hebei Orthopaedic Biomechanics key Laboratory, Trauma first Aid Center of the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
    2. Statistics Office of the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
  • Received:2022-06-30 Published:2022-12-05
  • Corresponding author: Yingze Zhang
  • About author:
    Wang Yan and Li Wenjing are equally contribute to this work
引用本文:

王燕, 李文静, 吕红芝, 李晶, 王娟, 任川, 张英泽. 骨质疏松骨折临床预测模型的建立与评价[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(06): 350-360.

Yan Wang, Wenjing Li, Hongzhi Lyu, Jing Li, Juan Wang, Chuan Ren, Yingze Zhang. Establishment and Evaluation of Clinical Predictive Model for Osteoporotic fracture[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2022, 08(06): 350-360.

目的

探讨老年人骨质疏松骨折的影响因素并建立预测模型。

方法

回顾性收集2021年1月1日至2021年12月31日河北医科大学第三医院收治的65岁以上骨折患者,以7:3的比例随机分为建模组和内部验证组,另外收集2022年1月1日至2022年3月31日河北医科大学第三医院收治的65岁以上骨折患者作为外部验证组,通过病案查询获取资料。采用多因素logistic回归分析筛选骨质疏松骨折的影响因素,在建模人群中构建骨质疏松骨折临床预测模型,分别进行整体、内部和外部验证,对模型的区分度、校准度和临床有效性进行评价,并绘制相应列线图。

结果

共有2 512例骨折患者符合纳入排除标准,年龄(75.2±7.7)岁,男936例(37.3%),女1 576例(62.7%),分为建模组(n=1 751)和内部验证组(n=761)。外部验证组共纳入599例骨折患者。根据多因素logistic回归分析,女性(OR=1.944,95% CI:1.569,2.409)、75岁以上人群(75~84岁,OR=2.150,95% CI:1.718,2.714;85~94岁,OR=4.285,95% CI:2.936,6.198)、BMI<18.5 kg/m2OR=1.885,95% CI:1.180,3.087)、高血压(OR=1.441,95% CI:1.168,1.779)、低蛋白血症(OR=2.484,95% CI:1.987,3.113)是骨质疏松骨折的独立危险因素,将其纳入到预测模型中并进行评价。模型的AUC值为0.734(95% CI:0.711,0.757),在内部验证组和外部验证组分别为0.717(95% CI:0.681,0.734)和0.717(95% CI:0.656,0.759)。整体、内部及外部验证的校准图均显示模型具有良好的校准度,且H-L检验结果P值均>0.05。DCA曲线提示,阈概率在0.3~0.8时,模型的临床有效性最佳。

结论

女性、75岁以上、BMI<18.5 kg/m2、患有高血压和低蛋白血症人群易发生骨质疏松骨折,依据本研究建立的临床预测模型可以较好的预测骨质疏松骨折的发病风险。

Objective

To explore the influencing factors of osteoporotic fracture in the elderly and establish a predictive model.

Methods

The fracture patients over 65 years old treated in the third Hospital of Hebei Medical University from January 1, 2021 to December 31, 2021 were collected retrospectively and randomly divided into modeling group and internal verification group at the proportion of 7:3. In addition, fracture patients over 65 years old treated in the third Hospital of Hebei Medical University from January 1, 2022 to March 31, 2022 were collected as external verification group, and the data were obtained through medical record inquiry. Multivariate logistic regression analysis was used to screen the influencing factors of osteoporotic fracture. A clinical prediction model of osteoporotic fracture was constructed in the modeling population, which was verified as a whole, internally and externally. The differentiation, calibration and clinical effectiveness of the model were evaluated, and the corresponding diagrams were drawn.

Results

A total of 2, 512 patients with fracture met the inclusion exclusion criteria, including 936 males (37.3%) and 1, 576 females (62.7%). They were divided into two groups: development group (n=1, 751) and internal validation group (n=761). A total of 599 patients with fracture were included in the external validation group. According to multivariate logistic regression analysis, female (OR=1.944, 95% CI: 1.569, 2.409)、age≥75 years old (75-84 years old, OR=2.150, 95% CI: 1.718, 2.714; 85-94 years old, OR=4.285, 95% CI: 2.936, 6.198) 、BMI<18.5 kg/m2 (OR=1.885, 95% CI: 1.180, 3.087) 、hypertension (OR=1.441, 95% CI: 1.168, 1.779) and hypoproteinemia (OR=2.484, 95% CI: 1.987, 3.113) were independent risk factors for osteoporotic fracture, which were included in the predictive model and evaluated. The AUC value of the model was 0.734 (95% CI: 0.711, 0.757), 0.717 (95% CI: 0.681, 0.734) in the internal verification group and 0.717 (95% CI: 0.656, 0.759) in the external verification group. The calibration maps verified by the development group, internal and external validation group all show that the prediction ability of the model is excellent, and the P value of H-L test are all higher than 0.05. The DCA curve indicated that the clinical validity of the model was the best when the threshold probability was 0.3-0.8.

Conclusions

Women, over 75 years old, BMI<18.5 kg/m2, people with hypertension and hypoproteinemia are prone to osteoporotic fracture. The clinical prediction model established in this study can better predict the risk of osteoporotic fracture.

图1 2021年65岁以上骨质疏松骨折患者的性别年龄分布
表1 骨质疏松骨折建模组与内部验证组基线资料比较结果[例(%)]
组别 性别 年龄(岁) 婚姻
65~74 75~84 85~94 ≥95 未婚 已婚 丧偶 离婚
建模组 647(37.0) 1104(63.0) 917(52.4) 579(33.1) 242(13.8) 13(0.7) 3(0.2) 1262(72.1) 2(0.1) 484(27.6)
内部验证组 289(38.0) 472(62.0) 422(55.5) 242(31.8) 90(11.8) 7(0.9) 3(0.4) 563(74.0) 3(0.4) 192(25.2)
全部 936(37.3) 1576(62.7) 1339(53.3) 821(32.7) 332(13.2) 20(0.8) 6(0.2) 1825(72.7) 5(0.2) 676(26.9)
χ2 0.239 3.012 4.605
P 0.625 0.390 0.203
组别 职业 民族 BMI
办公室职员 农民 工人 离退休人员 其他 无业 汉族 其他 <18.5 18.5~23.9 24~27.9 ≥28
建模组 16(0.9) 887(50.7) 21(1.2) 632(36.1) 149(8.5) 46(2.6) 1734(99.0) 17(1.0) 124(7.1) 800(45.7) 574(32.8) 253(14.4)
内部验证组 9(1.2) 378(49.7) 4(0.5) 277(36.4) 67(8.8) 26(3.4) 756(99.3) 5(0.7) 52(8.8) 343(45.1) 267(35.1) 99(13.0)
全部 25(1.0) 1265(50.4) 25(1.0) 909(36.2) 216(8.6) 72(2.9) 2490(99.1) 22(0.9) 176(7.0) 1143(45.5) 841(33.5) 352(14)
χ2 3.764 0.602 1.717
P 0.584 0.438 0.633
组别 居住地 高血压 甲亢
城镇 乡村
建模组 834(47.6) 917(52.4) 912(52.1) 839(47.9) 3(0.2) 1748(99.8)
内部验证组 354(46.5) 407(53.5) 394(51.8) 367(48.2) 4(0.5) 755(99.5)
全部 1188(47.3) 1324(52.7) 1306(52.0) 1206(48.0) 7(0.3) 2505(99.7)
χ2 0.263 0.020 1.291
P 0.608 0.886 0.256
组别 糖尿病 维生素D缺乏 心脏病
建模组 459(26.2) 1292(73.8) 4(0.2) 1747(99.8) 802(45.8) 949(54.2)
内部验证组 186(24.4) 575(75.6) 1(0.1) 760(99.9) 318(41.8) 443(58.2)
全部 645(25.7) 1867(74.3) 5(0.2) 2507(99.8) 1120(44.6) 1392(55.4)
χ2 0.873 <0.001 3.461
P 0.350 0.989 0.063
组别 呼吸系统疾病 既往骨折史 类风湿性关节炎 高脂血症
建模组 739(29.4) 1773(70.6) 150(6.0) 2363(94.0) 32(1.3) 2480(98.7) 74(2.9) 2438(97.1)
内部验证组 524(29.9) 1227(70.1) 110(6.3) 1641(93.7) 22(1.7) 1729(98.7) 54(3.1) 1697(96.9)
全部 215(28.3) 546(71.7) 40(5.3) 721(94.7) 10(1.3) 751(98.7) 20(2.6) 741(97.4)
χ2 0.715 0.994 0.014 0.386
P 0.398 0.319 0.906 0.535
组别 消化系统疾病 低蛋白血症 泌尿系统疾病 骨质疏松骨折
建模组 137(5.5) 2375(94.5) 922(36.7) 1590(63.3) 253(10.1) 2259(89.9) 1409(56.1) 1103(43.9)
内部验证组 95(5.4) 1656(94.6) 658(37.6) 1093(62.4) 184(10.5) 1567(89.5) 984(56.2) 767(43.8)
全部 42(5.5) 719(94.5) 264(34.7) 497(65.3) 69(9.1) 692(90.9) 425(55.8) 336(44.2)
χ2 0.009 1.904 1.217 0.026
P 0.924 0.168 0.270 0.871
表2 骨质疏松骨折建模组与外部验证组基线比较结果[例(%)]
组别 性别 年龄(岁) 婚姻
65~74 75~84 85~94 ≥95 未婚 已婚 丧偶 离婚
全部 848(36.1) 1502(63.9) 1259(53.6) 755(32.1) 323(13.7) 14(0.6) 7(0.3) 1725(73.4) 5(0.2) 614(26.1)
建模组 647(37.0) 1104(63.0) 917(52.4) 579(33.1) 242(13.8) 13(0.7) 3(0.2) 1262(72.1) 2(0.1) 484(27.6)
外部验证组 201(33.6) 398(66.4) 314(52.4) 199(33.2) 84(14.0) 2(0.3) 2(0.3) 439(73.3) 1(0.2) 157(26.2)
χ2 2.230 1.184  
P 0.135 0.757 0.625
组别 职业 民族 BMI
办公室职员 农民 工人 离退休人员 其他 无业 汉族 其他 <18.5 18.5~23.9 24~27.9 ≥28
全部 21(0.9) 1157(49.2) 25(1.1) 869(37.0) 221(9.4) 58(2.5) 2332(99.2) 19(0.8) 157(6.7) 1055(44.9) 799(34.0) 339(14.4)
建模组 16(0.9) 887(50.7) 21(1.2) 632(36.1) 149(8.5) 46(2.6) 1734(99.0) 17(1.0) 124(7.1) 800(45.7) 574(32.8) 253(14.4)
外部验证组 4(0.7) 290(48.4) 10(1.7) 218(36.4) 68(11.4) 9(1.5) 595(99.3) 4(0.7) 33(5.5) 255(42.6) 225(37.6) 86(14.4)
χ2 7.824 0.463 5.662
P 0.165 0.496 0.132
组别 居住地 高血压 甲亢 糖尿病
城镇 乡村
全部 1116(47.5) 1234(52.5) 1226(52.2) 1124(47.8) 3(0.1) 2347(99.9) 614(26.1) 1737(73.9)
建模组 834(47.6) 917(52.4) 912(52.1) 839(47.9) 3(0.2) 1748(99.8) 459(26.2) 1292(73.8)
外部验证组 282(47.1) 317(52.9) 314(52.4) 285(47.6) 0(0.0) 599(100.0) 162(27.0) 437(73.0)
χ2 0.054 0.020   0.159
P 0.816 0.887 0.575 0.690
组别 维生素D缺乏 心脏病 呼吸系统疾病 既往骨折史 类风湿性关节炎
全部 7(0.3) 2343(99.7) 1085(46.2) 1265(53.8) 704(30.0) 1646(70.0) 151(6.4) 2199(93.6) 26(1.1) 2324(98.9)
建模组 4(0.2) 1747(99.8) 802(45.8) 949(54.2) 524(29.9) 1227(70.1) 110(6.3) 1641(93.7) 22(1.3) 1729(98.7)
外部验证组 3(0.5) 596(99.5) 283(47.2) 316(52.8) 180(30.1) 419(69.9) 41(6.8) 558(93.2) 4(0.7) 595(99.3)
χ2 0.374 1.175 0.003 0.235 1.413
P 0.541 0.278 0.954 0.628 0.234
组别 高脂血症 消化系统疾病 低蛋白血症 泌尿系统疾病 骨质疏松骨折
全部 78(3.3) 2272(96.7) 124(5.3) 2226(94.7) 911(38.8) 1439(61.4) 246(10.5) 2104(89.5) 1339(57.0) 1011(43.0)
建模组 54(3.1) 1696(96.9) 95(5.4) 1656(94.6) 658(37.6) 1093(62.4) 184(10.5) 1567(89.5) 984(56.2) 767(43.8)
外部验证组 24(4.0) 575(96.0) 29(4.8) 570(95.2) 253(42.2) 346(57.8) 62(10.4) 537(89.6) 355(59.3) 244(40.7)
χ2 1.184 0.395 4.080 0.011 1.715
P 0.277 0.581 0.043 0.917 0.190
表3 骨质疏松骨折建模组单因素分析结果[例(%)]
组别 性别 年龄(岁) 婚姻
65~74 75~84 85~94 ≥95 未婚 已婚 丧偶 离婚
全部 647(37.0) 1104(63.0) 917(52.4) 579(33.1) 242(13.8) 13(0.7) 3(0.2) 1262(72.1) 4(0.1) 484(27.6)
骨质疏松骨折组 295(23.0) 689(70.0) 390(39.6) 386(39.2) 198(20.1) 10(1.0) 1(0.1) 634(64.4) 1(0.1) 348(35.4)
非骨质疏松骨折组 352(45.9) 415(54.1) 527(68.7) 193(25.2) 44(5.7) 3(0.4) 2(0.3) 628(81.9) 3(0.1) 136(17.7)
χ2 46.852 162.168  
P <0.001 <0.001 <0.001
组别 职业 民族 BMI
办公室职员 农民 工人 离退休人员 其他 无业 汉族 其他 <18.5 18.5~23.9 24~27.9 ≥28
全部 16(0.9) 887(50.7) 21(1.2) 632(36.1) 149(8.5) 46(2.6) 17(0.9) 1734(99.1) 124(7.1) 800(45.7) 574(32.8) 253(14.4)
骨质疏松骨折组 6(0.6) 487(47.5)9 7(0.7) 391(39.7) 61(6.2) 32(3.3) 10(1.0) 974(99.0) 96(9.8) 458(46.5) 296(30.1) 134(13.6)
非骨质疏松骨折组 10(1.3) 400(52.2) 14(1.8) 241(31.4) 88(11.5) 14(1.8) 7(0.9) 760(99.1) 28(3.7) 342(44.6) 278(36.2) 19(15.5)
χ2 33.018 0.048 29.119
P <0.001 0.826 <0.001
组别 居住地 高血压 甲亢 糖尿病 维生素D缺乏
城镇 乡村
全部 834(47.6) 917(52.4) 912(52.1) 839(47.9) 3(0.2) 1 748(99.8) 459(26.2) 1 292(73.8) 4(0.2) 1 747(99.8)
骨质疏松骨折组 508(51.6) 476(48.4) 561(57.0) 423(43.0) 2(0.2) 982(99.8) 274(27.8) 710(72.2) 3(0.3) 981(99.7)
非骨质疏松骨折组 326(42.5) 441(57.5) 351(45.8) 416(54.2) 1(0.1) 766(99.9) 185(24.1) 582(75.9) 1(0.1) 766(99.9)
χ2 14.381 21.857   3.093  
P <0.001 <0.001 1 0.079 0.636
组别 心脏病 呼吸系统疾病 既往骨折史 类风湿性关节炎
全部 802(45.8) 949(54.2) 524(29.9) 1227(70.1) 110(6.3) 1641(93.7) 22(1.3) 1729(98.7)
骨质疏松骨折组 518(52.6) 466(47.4) 312(31.7) 672(68.3) 66(6.7) 918(93.3) 16(1.6) 968(98.4)
非骨质疏松骨折组 284(37.0) 483(63.0) 212(27.6) 555(72.4) 44(5.7) 723(94.3) 6(0.8) 761(99.2)
χ2 42.336 3.400 0.690 2.473
P <0.001 0.065 0.406 0.116
组别 高脂血症 消化系统疾病 低蛋白血症 泌尿系统疾病
全部 54(3.1) 1697(96.9) 95(5.4) 1656(94.6) 658(37.6) 1093(62.4) 184(10.5) 1567(89.5)
骨质疏松骨折组 27(2.47) 957(97.3) 55(5.6) 929(94.4) 483(49.1) 501(50.9) 110(11.2) 874(88.8)
非骨质疏松骨折组 27(3.5) 740(96.5) 40(5.2) 727(94.8) 175(22.8) 592(77.2) 74(9.6) 693(90.4)
χ2 0.869 0.118 126.801 1.074
P 0.351 0.732 <0.001 0.300
表4 骨质疏松骨折建模组多因素logistic回归分析结果
图11 骨质疏松骨折临床预测模型列线图
1
Kanis JA, Burlet N, Cooper C, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women [J]. Osteoporos Int, 2008, 19(4): 399-428.
2
徐又佳,高焱,刘功稳.骨质疏松性髋部骨折的治疗和管理策略[J].中国骨质疏松杂志, 2019, 25(05): 585-589.
3
Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration [J]. Ann Intern Med, 2015, 162(1): W1-73.
4
Ranstam J, Cook JA, Collins GS. Clinical prediction models [J]. Br J Surg, 2016, 103(13): 1886.
5
Agarwal A, Leslie WD. Fracture prediction tools in diabetes [J]. Curr Opin Endocrinol Diabetes Obes, 2022, 29(4): 326-332.
6
Lv H, Zhang Q, Yin Y, et al. Epidemiologic characteristics of traumatic fractures during the outbreak of coronavirus disease 2019 (COVID-19) in China: A retrospective & comparative multi-center study [J]. Injury, 2020, 51(8): 1698-1704.
7
Bian FC, Cheng XK, An YS. Preoperative risk factors for postoperative blood transfusion after hip fracture surgery: establishment of a nomogram [J]. J Orthop Surg Res, 2021, 16(1): 406.
8
Wu J, Zhang H, Li L, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis [J]. Cancer Commun (Lond), 2020, 40(7): 301-312.
9
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures [J]. Epidemiology, 2010, 21(1): 128-138.
10
Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer [J]. J Clin Oncol, 2016, 34(18): 2157-2164.
11
Chen LR, Hou PH, Chen KH. Nutritional support and physical modalities for People with osteoporosis: current opinion [J]. Nutrients, 2019, 11(12): 2848.
12
张英泽.老年骨质疏松性骨折的防治焦点[J].中华老年骨科与康复电子杂志, 2021, 7(1): 1.
13
邵佳申,刘勃,李佳,等. 2010至2011年河北省老年股骨转子间骨折的流行病学特征分析[J].中华老年骨科与康复电子杂志, 2018, 4(06): 352-355.
14
Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton [J]. Trends Endocrinol Metab, 2012, 23(11): 576-81.
15
Gomes NA, Guarenghi GG, Valenga HM, et al. Mandibular-related bone metabolism in orchiectomized rats treated with sex hormones [J]. Arch Oral Biol, 2021, 122:105000.
16
Biason-Lauber A, Lang-Muritano M. Estrogens: Two nuclear receptors, multiple possibilities [J]. Mol Cell Endocrinol, 2022, 554:111710.
17
Almeida M, Laurent MR, Dubois V, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology [J]. Physiol Rev, 2017, 97(1): 135-187.
18
Vescini F, Chiodini I, Falchetti A, et al. Management of Osteoporosis in Men: A Narrative Review [J]. Int J Mol Sci, 2021, 22(24): 13640.
19
Liu R, Chao A, Wang K, et al. Incidence and risk factors of medical complications and direct medical costs after osteoporotic fracture among patients in China [J]. Arch Osteoporos, 2018, 13(1): 12.
20
Bhattarai HK, Shrestha S, Rokka K, et al. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging [J]. J Osteoporos, 2020, 2020: 9324505.
21
Barbé-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases [J]. Semin Immunopathol, 2020, 42(5): 545-557.
22
Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies [J]. Biogerontology, 2021, 22(2): 165-187.
23
Porta S, Martínez A, Millor N, et al. Relevance of sex, age and gait kinematics when predicting fall-risk and mortality in older adults [J]. J Biomech, 2020, 105: 109723.
24
Chanplakorn P, Lertudomphonwanit T, Daraphongsataporn N, et al. Development of prediction model for osteoporotic vertebral compression fracture screening without using clinical risk factors, compared with FRAX and other previous models [J]. Arch Osteoporos, 2021, 16(1): 84.
25
李泽佳,康新民,王临青,等.老年髋部骨折的防治进展[J].中华老年骨科与康复电子杂志, 2021, 8(3): 188-192.
26
Raterman HG, Bultink IE, Lems WF. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention [J]. Expert Opin Pharmacother, 2020, 21(14): 1725-1737.
27
McArthur C, Lee A, Alrob HA, et al. An update of the prevalence of osteoporosis, fracture risk factors, and medication use among community-dwelling older adults: results from the Canadian Longitudinal Study on Aging (CLSA) [J]. Arch Osteoporos, 2022, 17(1): 31.
28
Barake M, El Eid R, Ajjour S, et al. Osteoporotic hip and vertebral fractures in the Arab region: a systematic review [J]. Osteoporos Int, 2021, 32(8): 1499-1515.
29
Kim J, Lee S, Kim SS, et al. Association between body mass index and fragility fracture in postmenopausal women: a cross-sectional study using Korean National Health and Nutrition Examination Survey 2008-2009 (KNHANES IV) [J]. BMC Womens Health, 2021, 21(1): 60.
30
Mortensen SJ, Beeram I, Florance J, et al. Modifiable lifestyle factors associated with fragility hip fracture: a systematic review and meta-analysis [J]. J Bone Miner Metab, 2021, 39(5): 893-902.
31
Li Y, Hui M, Chang X, et al. BMI reduction and vitamin D insufficiency mediated osteoporosis and fragility fractures in patients at nutritional risk: a cross-sectional study [J]. Eur J Clin Nutr, 2018, 72(3): 455-459.
32
Kaze AD, Rosen HN, Paik JM. A meta-analysis of the association between body mass index and risk of vertebral fracture [J]. Osteoporos Int, 2018, 29(1): 31-39.
33
Cherukuri L, Kinninger A, Birudaraju D, et al. Effect of body mass index on bone mineral density is age-specific [J]. Nutr Metab Cardiovasc Dis, 2021, 31(6): 1767-1773.
34
Lins Vieira NF, da Silva Nascimento J, do Nascimento CQ, et al. Association between Bone Mineral Density and Nutritional Status, Body Composition and Bone Metabolism in Older Adults [J]. J Nutr Health Aging, 2021, 25(1): 71-76.
35
Gould NR, Torre OM, Leser JM, et al. The cytoskeleton and connected elements in bone cell mechano-transduction [J]. Bone, 2021, 149: 115971.
36
Hetemäki N, Mikkola TS, Tikkanen MJ, et al. Adipose tissue estrogen production and metabolism in premenopausal women [J]. J Steroid Biochem Mol Biol, 2021, 209: 105849.
37
Masugata H, Senda S, Inukai M, et al. Association between bone mineral density and arterial stiffness in hypertensive patients [J]. Tohoku J Exp Med, 2011, 223(2): 85-90.
38
Rostand SG, Mcclure LA, Kent ST, et al. Associations of blood pressure, sunlight, and vitamin D in community-dwelling adults [J]. J Hypertens, 2016, 34(9): 1704-1710.
39
Li C, Zeng Y, Tao L, et al. Meta-analysis of hypertension and osteoporotic fracture risk in women and men [J]. Osteoporos Int, 2017, 28(8): 2309-2318.
40
Li TC, Li C, Liu CS, et al. Visit-to-visit blood pressure variability and hip fracture risk in older persons [J]. Osteoporos Int, 2019, 30(4): 763-770.
41
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health [J]. Lancet Diabetes Endocrinol, 2021, 9(9): 606-621.
42
Kitamura K, Nakamura K, Nishiwaki T, et al. Determination of whether the association between serum albumin and activities of daily living in frail elderly People is causal [J]. Environ Health Prev Med, 2012, 17(2): 164-168.
43
Snyder CK, Lapidus JA, Cawthon PM, et al. Serum albumin in relation to change in muscle mass, muscle strength, and muscle power in older men [J]. J Am Geriatr Soc, 2012, 60(9): 1663-1672.
44
Feskanich D, Meyer HE, Fung TT, et al. Milk and other dairy foods and risk of hip fracture in men and women [J]. Osteoporos Int, 2018, 29(2): 385-396.
45
Langsetmo L, Barr SI, Berger C, et al. Associations of protein intake and protein source with bone mineral density and fracture risk: A population-based cohort study [J]. J Nutr Health Aging, 2015, 19(8): 861-868.
46
Weaver AA, Tooze JA, Cauley JA, et al. Effect of Dietary Protein Intake on Bone Mineral Density and Fracture Incidence in Older Adults in the Health, Aging, and Body Composition Study [J]. J Gerontol A Biol Sci Med Sci, 2021, 76(12): 2213-2222.
47
Devine A, Dick IM, Islam AF, et al. Protein consumption is an important predictor of lower limb bone mass in elderly women [J]. Am J Clin Nutr, 2005, 81(6): 1423-1428.
48
Mohsin S, Baniyas MM, AlDarmaki RS, et al. An update on therapies for the treatment of diabetes-induced osteoporosis [J]. Expert Opin Biol Ther, 2019, 19(9): 937-948.
49
Kim M, Bak J, Kim S, et al. Effect of Lumbar Epidural Steroid Injections on Osteoporotic Fracture and Bone Mineral Density in Elderly Women with Diabetes Mellitus [J]. Pain Res Manag, 2020, 2020: 1538029.
50
Ji S, Jiang X, Han H, et al. Prediabetes and osteoporotic fracture risk: A meta-analysis of prospective cohort studies [J]. Diabetes Metab Res Rev, 2022, 38(7): e3568.
51
McCarthy CJ, Kelly MA, Kenny PJ. Assessment of previous fracture and anti-osteoporotic medication prescription in hip fracture patients [J]. Ir J Med Sci, 2022, 191(1): 247-252.
52
Morin SN, Yan L, Lix LM, et al. Long-term risk of subsequent major osteoporotic fracture and hip fracture in men and women: a population-based observational study with a 25-year follow-up [J]. Osteoporos Int, 2021, 32(12): 2525-2532.
53
Toth E, Banefelt J, Åkesson K, et al. History of Previous Fracture and Imminent Fracture Risk in Swedish Women Aged 55 to 90 Years Presenting With a Fragility Fracture [J]. J Bone Miner Res, 2020, 35(5): 861-868.
54
McCarthy CJ, Kelly MA, Kenny PJ. Assessment of previous fracture and anti-osteoporotic medication prescription in hip fracture patients [J]. Ir J Med Sci, 2022, 191(1): 247-252.
55
Hernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) [J]. Arch Osteoporos, 2013, 8: 136.
56
Hunter DJ. Uncertainty in the era of precision medicine [J]. N Engl J Med, 2016, 375(8): 711-713.
[1] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[4] 郭杰坤, 王楹, 杨轩, 晏欢欣, 钟豪. Ilizarov 骨搬移技术在急诊一期修复GustiloⅢB 型胫骨长段开放粉碎性骨折的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 507-510.
[5] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[6] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[7] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[8] 黄韬, 杨晓华, 薛天森, 肖睿. 改良“蛋壳”技术治疗老年OVCF及对脊柱矢状面平衡参数、预后的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 340-348.
[9] 谭明明, 战世强, 侯宏涛, 曾翔硕. 经皮微创椎弓根螺钉内固定术对骨质疏松脊柱压缩性骨折患者临床研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 349-354.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[12] 张峻, 赵建民, 姚晓克, 吉浩宇, 越瑞祥. 增加CT对桡骨远端骨折分型的可靠性及可重复性评价[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 264-272.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 喻蓉, 周伟力, 雷青, 陈松, 陈立, 刘峰, 丁州, 阳宏奇, 王康, 王大鹏. 改良的内外侧环抱锁定钢板在复杂胫骨平台骨折治疗中的临床疗效观察[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 764-770.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要