切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 65 -76. doi: 10.3877/cma.j.issn.2096-0263.2025.02.001

生物力学

不同股骨假体屈曲角下人工膝关节生物力学特征的有限元分析
乔凯1,2, 田康1, 陈琦1, 邹吉扬1, 李杰1, 张卫国1,()   
  1. 1. 116011 大连医科大学第一附属医院运动医学科
    2. 518172 深圳,香港中文大学(深圳)医学院
  • 收稿日期:2023-10-30 出版日期:2025-04-05
  • 通信作者: 张卫国
  • 基金资助:
    大连市科技创新基金(2023JJ13SN051),大连市临床重点学科登峰计划(2022DF012)辽宁省自然科学基金(2019-MS-079-2019-2021)

Finite element analysis of biomechanical characteristics of artificial knee joints with different femoral prosthesis flexion angles

Kai Qiao1,2, Kang Tian1, Qi Chen1, Jiyang Zou1, Jie Li1, Weiguo Zhang1,()   

  1. 1. Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
    2. School of Medicine,The Chinese University of Hong Kong,Shenzhen 518172,China
  • Received:2023-10-30 Published:2025-04-05
  • Corresponding author: Weiguo Zhang
引用本文:

乔凯, 田康, 陈琦, 邹吉扬, 李杰, 张卫国. 不同股骨假体屈曲角下人工膝关节生物力学特征的有限元分析[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(02): 65-76.

Kai Qiao, Kang Tian, Qi Chen, Jiyang Zou, Jie Li, Weiguo Zhang. Finite element analysis of biomechanical characteristics of artificial knee joints with different femoral prosthesis flexion angles[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(02): 65-76.

目的

开发具有不同股骨假体屈曲角的全膝关节置换模型,并借助有限元分析法探究股骨假体以异常的矢状位角度置入对人工膝关节生物力学特征的影响。

方法

采用有限元分析法分别建立股骨假体伸展、中立、轻度屈曲、过屈的人工膝关节模型,随后对直立及屈膝条件下的工况进行仿真模拟,以峰值von-Mises应力为观察指标,对不同股骨假体屈曲角下人工膝胫股关节及髌股关节接触压的变化趋势进行静力学分析。

结果

(1)直立状态下股骨假体的峰值von-Mises应力随着股骨假体屈曲角的增加逐渐增大,从4.523 MPa 增大到7.148 MPa,应力集中在股骨假体和聚乙烯衬垫接触的类圆形区域内,该区域随假体屈曲的加深而发生前移;聚乙烯衬垫上表面的峰值von-Mises应力亦随假体屈曲程度的增加而增大,当假体过屈时最高可达13.622 MPa,位于衬垫立柱前端,应力集中区域的变化趋势与股骨假体保持一致。(2)当膝关节屈曲30°时,应力主要集中在髌股关节面内侧,随着屈膝角度增加到60°,应力集中区发生上移,髌股关节面内、外侧应力随之增大;在同一屈膝角度下,假体屈曲组的髌骨软骨峰值von-Mises 应力高于假体中立组,且随股骨假体屈曲角的增加逐渐增大,但均小于假体伸展组。

结论

股骨假体的矢状面置入角度是人工膝关节生物力学的一个重要影响因素。在后稳定型全膝关节置换模型中,无论假体过屈还是伸展都会导致髌股关节接触压升高,而衬垫上表面的峰值应力则受假体过屈的影响较大。在临床实践中,当遇到假体型号与患者关节尺寸不匹配时,可考虑将股骨假体轻度屈曲位放置,但应避免假体过屈及伸展。

Objective

To develop total knee arthroplasty models with different femoral prosthesis flexion angles, and to investigate the effects of femoral prosthesis placement at abnormal sagittal angles on the biomechanical characteristics of the artificial knee joint by means of finite element analysis.

Methods

The finite element analysis method was used to establish the artificial knee joint models of femoral prosthesis extension,neutral,mild flexion,and hyperflexion,respectively.Subsequently,the working conditions under upright and flexed knee positions were simulated,and the peak von-Mises stress was used as an observation index to statically analyze the trend of contact pressure changes in the tibiofemoral and patellofemoral joints of the artificial knee under different femoral prosthesis flexion angles.

Results

(1)The peak von-Mises stress of the femoral prosthesis in the upright position gradually increased with the increase of the femoral prosthesis flexion angle, from 4.523 MPa to 7.148 MPa, and the stress was concentrated in the circular-like region of contact between the femoral prosthesis and polyethyleneliner,which shifted forward with the deepening of the prosthesis flexion;the peak von-Mises stress on the upper surface of the polyethylene liner also increased with the degree of prosthesis flexion,reaching a maximum of 13.622 MPa when the prosthesis was hyperflexed, which was located at the anterior end of the liner column, and the trend of the stressconcentration area was consistent with that of the femoral prosthesis. (2) When the knee was flexed at 30°, the stress was mainly concentrated on the medial patellofemoral joint surface; as the knee flexion angle increases to 60°,the stress concentration area shifted upward,and the stress on the medial and lateral patellofemoral joint surface were then increased.Under the same knee flexion angle,the peak von-Mises stress of the patellar cartilage in the prosthesis flexion group was higher than that of the prosthesis neutral group,and it was gradually increasing with the increase of the femoral prosthesis flexion angle, but both of them were smaller than that in the prosthesis extension group.

Conclusions

The sagittal placement angle of femoral prosthesis is an important factor affecting the biomechanics of the artificial knee joint.In the posterior-stabilizedtotal knee arthroplasty model,both prosthesis hyperflexion and extension resulted in elevated patellofemoral joint contact pressures,whereas the peak stress on the upper surface of the liner was more affected by prosthesis hyperflexion. In clinical practice, when a mismatch between the prosthesis model and the patient's joint dimensions is encountered, placement of the femoral prosthesis in a mildly flexed position may be considered, but hyperflexion and extension of the prosthesis should be avoided.

图1 志愿者双下肢三维几何模型及右膝关节模型修复示意图
图2 膝关节软组织参数化建模示意图 图3 基于Geomagic软件的模型实体化示意图
表1 自然膝模型材料属性及单元节点数
表2 自然膝各部件间的接触类型
表3 自然膝模型材料属性及单元节点数
图4 1 000N 竖直载荷加载示意图
图5 134 N 前向推力加载示意图
图6 基于逆向工程技术构建的Zimmer Nexgen膝关节假体三维模型
图7 基于3-matic软件模拟全膝关节置换术
图8 基于3-matic软件模拟全膝关节置换术
图9 基于3-matic软件模拟全膝关节置换术
图10 基于3-matic软件模拟全膝关节置换术
图11 基于3-matic软件模拟全膝关节置换术
图12 基于3-matic软件模拟全膝关节置换术
图13 ~16 具有不同FPFA的TKA三维几何模型。图13 假体伸展组(FPFA=-2°);图14 假体中立组(FPFA=2.3°);图15 假体轻度屈曲组(FPFA=5°);图16 假体过屈组(FPFA=7°);
表4 自然膝模型材料属性及单元节点数
表5 假体系统各部件间的接触类型
图17 重力载荷加载示意图
图18 股四头肌载荷加载示意图
图19 ~22 模型验证结果。图19 内侧胫骨软骨应力分布及应力峰值云图;图20 外侧胫骨软骨应力分布及应力峰值云图;图21 内侧半月板应力分布及应力峰值云图;图22 外侧半月板应力分布及应力峰值云图;
图23 胫骨位移分布云图
图24 本研究与既往文献中模型验证结果(应力)统计图
图25 本研究与既往文献中模型验证结果(应变)统计图
图26 ~29 股骨假体应力分布及应力峰值云图。图26 假体伸展组(FPFA=-2°);图27 假体中立组(FPFA=2.3°);图28 假体轻度屈曲组(FPFA=5°);图29 假体过屈组(FPFA=7°) 图30~33 聚乙烯衬垫上表面应力分布及应力峰值云图。图30 假体伸展组(FPFA=-2°);图31 假体中立组(FPFA=2.3°);图32 假体轻度屈曲组(FPFA=5°);图33 假体过屈组(FPFA=7°)
图34 ~37 屈膝30°时髌骨软骨应力分布及应力峰值云图。图34 假体伸展组(FPFA=-2°);图35 假体中立组(FPFA=2.3°);图36 假体轻度屈曲组(FPFA=5°);图37假体过屈组(FPFA=7°) 图38~41 屈膝60°时髌骨软骨应力分布及应力峰值云图。图38 假体伸展组(FPFA=-2°);图39 假体中立组(FPFA=2.3°);图40 假体轻度屈曲组(FPFA=5°);图41 假体过屈组(FPFA=7°)
图42 不同FPFA下TKA模型胫股关节峰值接触压柱状图
图43 不同FPFA下TKA模型髌股关节峰值接触压柱状图
1
Viganò R, Marega LC, Breemans E, et al.A systematic literature review of the Profix in primary total knee arthroplasty[J].Acta Orthop Belg,2012,78(1):55-60.
2
Schulze A,Scharf H.[Satisfaction after total knee arthroplasty.Comparison of 1990-1999 with 2000-2012] [J]. Der Orthopade, 2013, 42(10):858-865.
3
Miller AG, Purtill JJ.Accuracy of digital templating in total knee arthroplasty[J].Am J Orthop(Belle Mead NJ),2012,41(11):510-512.
4
Khan M,Osman K,Green G,et al.The epidemiology of failure in total knee arthroplasty: avoiding your next revision [J]. Bone Joint J,2016,98-b(1 Suppl A):105-112.
5
Bargren JH, Blaha JD, Freeman M. Alignment in total knee arthroplasty[J].Clin Orthop,1983,173(173):173-178.
6
Liau JJ, Cheng CK, Huang CH, et al.The effect of malalignment on stresses in polyethylene component of total knee prostheses--a finite element analysis[J].Clin Biomech,2002,17(2):140-146.
7
Gromov K,Korchi M,Thomsen MG,et al.What is the optimal alignment of the tibial and femoral components in knee arthroplasty? [J].Acta Orthop,2014,85(5):480-487.
8
Kim YH, Park JW, Kim JS, et al. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis [J]. Int Orthop, 2014, 38(2):379-385.
9
Minoda Y, Watanabe K, Iwaki H, et al. Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system[J].J Arthroplasty,2013,28(9):1533-1537.
10
Tang WM, Chiu KY, Kwan MFY, et al. Sagittal bowing of the distal femur in Chinese patients who require total knee arthroplasty [J]. J Orthop Res,2005,23(1):41-45.
11
Scott CEH,Holland G,Gillespie M,et al.The ability to kneel before and after total knee arthroplasty [J]. Bone Joint J, 2021, 103-B(9):1514-1525.
12
Dennis DA,Kim RH,Johnson DR,et al.The john insall award:control-matched evaluation of painful patellar crepitus after total knee arthroplasty[J].Clin Orthop Relat Res,2011,469(1):10-17.
13
Kanna R, Ravichandran C, Shetty GM. Notching is less, if femoral component sagittal positioning is planned perpendicular to distal femur anterior cortex axis,in navigated TKA[J].Knee Surg Relat Res,2021,33(1):46.
14
Kim YH, Park JW, Kim JS, et al. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis [J]. Int Orthop, 2014, 38(2):379-385.
15
Lustig S, Scholes CJ, Stegeman TJ, et al. Sagittal placement of the femoral component in total knee arthroplasty predicts knee flexion contracture at one-year follow-up [J]. Int Orthop, 2012, 36(9): 1835-1839.
16
Kubíek M, Florian Z. Stress strain analysis of knee joint [J]. Engineering Mechanics,2009,16(5):315-322.
17
Rapagna S, Roberts BC, Solomon LB, et al. Tibial cartilage, subchondral bone plate and trabecular bone microarchitecture in varusand valgus-osteoarthritis versus controls [J]. J Orthop Res, 2021, 39(9):1988-1999.
18
Mou ZF, Dong WP, Zhang Z, et al. Optimization of parameters for femoral component implantation during TKA using finite element analysis and orthogonal array testing[J].J Orthop Surg Res,2018,13(1):179.
19
Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular cartilage [J]. J Biomech Eng, 1984, 106(2):165-173.
20
Peña E,Calvo B,Martínez MA,et al.A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint[J].J Biomech,2006,39(9):1686-1701.
21
Woiczinski M,Steinbrück A,Weber P,et al.Development and validation of a weight-bearing finite element model for total knee replacement [J]. Comput Methods Biomech Biomed Engin, 2016, 19(10):1033-1045.
22
Rao C, Fitzpatrick CK, Rullkoetter PJ, et al. A statistical finite element model of the knee accounting for shape and alignment variability[J].Med Eng Phys,2013,35(10):1450-1456.
23
Bowman KFJ,Sekiya JK.Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee [J]. Sports Med Arthrosc Rev,2010,18(4):222-229.
24
Baldwin,L J.The anatomy of the medial patellofemoral ligament[J].American Journal of Sports Medicine,2009,37(12):2355-2361.
25
Murphy M, Journeaux S, Hides J, et al. Does flexion of the femoral implant in total knee arthroplasty increase knee flexion: a randomised controlled trial[J].Knee,2014,21(1):257-263.
26
Saffarini M, Nover L, Tandogan R, et al. The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA [J]. Knee Surgery Sports Traumatology Arthroscopy,2019,27(4):1018-1027.
27
Park KK, Koh YG, Park KM, et al. Biomechanical effect with respect to the sagittal positioning of the femoral component in unicompartmental knee arthroplasty [J]. Biomed Mater Eng, 2019, 30(2):171-182.
28
Kwon HM,Lee JA,Koh YG,et al.Effects of contact stress on patellarfemoral joint and quadriceps force in fixed and mobile-bearing medial unicompartmental knee arthroplasty [J]. J Orthop Surg Res,2020,15(1):517.
29
Kang KT,Son J,Kwon SK,et al.Finite element analysis for the biomechanical effect of tibial insert materials in total knee arthroplasty[J].Compos Struct,2018,201:141-150.
30
Kyomoto M,Iwasaki Y,Moro T,et al.High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine) [J]. Biomaterials, 2007, 28(20):3121-3130.
31
LeRoux,Michelle,A.,et al.Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension[J].Journal of biomechanical engineering,2002.
32
Sharma A,Leszko F,Komistek RD,et al.In vivo patellofemoral forces in high flexion total knee arthroplasty[J].J Biomech,2008,41(3):642-648.
33
Bao HRC,Zhu D,Gong H,et al.The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis[J].J Orthop Sci,2013,18(2):256-263.
34
Song YH,Debski RE,Musahl V,et al.A three-dimensional finite element model of the human anterior cruciate ligament:a computational analysis with experimental validation [J]. J Biomech, 2004, 37(3):383-390.
35
Gabriel MT,Wong EK,Woo SLY, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads [J].Journal of Orthopaedic Research,2004,22(1):85-89.
36
Fu FH, Bennett CH, Lattermann C, et al. Current trends in anterior cruciate ligament Reconstruction. Part 1: Biology and biomechanics of Reconstruction[J].Am J Sports Med,1999,27(6):821-830.
37
Dennis DA, Komistek RD, Scuderi GR, et al. Factors affecting flexion after total knee arthroplasty [J]. Clin Orthop Relat Res, 2007,464:53-60.
38
Hamai S, Miura H, Higaki H, et al. Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement[J].J Bone Joint Surg Br,2008,90(9):1180-1185.
39
Collier MB, Engh CA, Mcauley JP, et al. Osteolysis after total knee arthroplasty:influence of tibial baseplate surface finish and sterilization of polyethylene insert [J]. J Bone Joint Surg Am, 2005, 87(12):2702-2708.
40
Scott C,Clement N D,Yapp L Z,et al.Association Between Femoral Component Sagittal Positioning and Anterior Knee Pain in Total Knee Arthroplasty: A 10-Year Case-Control Follow-up Study of a Cruciate-Retaining Single-Radius Design [J]. J Bone Joint Surg Am,101(17):1575-1585.
41
Hanson GR, Suggs JF, Kwon YM, et al. In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty[J].J Orthop Res,2007,25(11):1447-1453.
42
Antony J,Tetsworth K,Hohmann E.Influence of sagittal plane component alignment on kinematics after total knee arthroplasty [J].Knee Surg Sports Traumatol Arthrosc,2017,25(6):1686-1691.
43
Tsukeoka T, Lee TH. Sagittal flexion of the femoral component affects flexion gap and sizing in total knee arthroplasty [J]. J Arthroplasty,2012,27(6):1094-1099.
44
Kuriyama SNH, Hyakuna K, Inoue S, et al. Bone-femoral component interface gap after sagittal mechanical axis alignment is filled with new bone after cementless total knee arthroplasty [J]. Knee Surg Sports Traumatol Arthrosc,2018,26(5):1478-1484.
45
Shah SM, Sciberras NC, Allen DJ, et al. Technical and surgical causes of outliers after computer navigated total knee arthroplasty[J].J Orthop,2020,18:171-176.
46
Shah MR,Patel JP,Patel CR.Optimal flexion for the femoral component in TKR:A study of angle between mechanical axis and distal anatomic intramedullary axis using 3D reconstructed CT scans in 407 osteoarthritic knees studied in India [J]. Indian J Orthop, 2020, 54(5):624-630.
[1] 杨尚晟, 刘义, 王伟, 李嘉, 王键, 田明昊, 吴迪. 腓骨远端后侧与外侧钢板治疗外踝骨折的有限元分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 736-741.
[2] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[3] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[4] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[5] 王星棋, 申吉泓. 单支网片全尿道悬吊联合后盆生物力学重建术的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 1-6.
[6] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[7] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[8] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[9] 王曦, 关鹏飞. 双钢板内固定治疗肱骨远1/3骨折的有限元分析及基于肘关节功能和肘关节活动度评估疗效[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 230-237.
[10] 丁一, 杨嘉瑞, 李学民. 眼部建模的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 356-360.
[11] 邓瑞晨, 肖洪岩, 魏新运, 杨伟胤, 谢云岗. 基于下肢生物力学评估经皮微创空心螺钉内固定治疗跟骨骨折的临床研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(01): 46-51.
[12] 李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.
[13] 权元元, 丁凯, 王海程, 李彦霖, 张一凡, 张建志, 陈伟. 骨小梁的形态结构和生物力学性能研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 123-128.
[14] 孙阳, 杨帅, 贾晋瑄, 杜震, 周凌峰, 魏贤振. 电针联合等速训练对THA术后髋关节生物力学的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 103-110.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 980-987.
阅读次数
全文


摘要