切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 123 -128. doi: 10.3877/cma.j.issn.2096-0263.2024.02.009

综述

骨小梁的形态结构和生物力学性能研究进展
权元元1, 丁凯2, 王海程2, 李彦霖3, 张一凡2, 张建志4, 陈伟2,()   
  1. 1. 041000 临汾,临汾职业技术学院医学系;050051 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心
    2. 050051 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心
    3. 050051 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心;300450 天津市,天津市滨海新区中医医院康复科
    4. 050051 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心;050041 石家庄,河北省胸科医院骨二科
  • 收稿日期:2023-10-28 出版日期:2024-04-05
  • 通信作者: 陈伟
  • 基金资助:
    国家自然科学基金面上项目(82072447); 河北省自然科学基金杰出青年项目(H2021206329)

Research progress on morphological structure and biomechanical properties of trabeculae

Yuanyuan Quan1, Kai Ding2, Haicheng Wang2, Yanlin Li3, Yifan Zhang2, Jianzhi Zhang4, Wei Chen2,()   

  1. 1. Department of Medicine, Linfen Vocational and Technical College, Shanxi Linfen 041000,China; Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Hebei Shijiazhuang 050051, China
    2. Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Hebei Shijiazhuang 050051, China
    3. Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Hebei Shijiazhuang 050051, China; Department of Rehabilitation, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, China
    4. Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Hebei Shijiazhuang 050051, China; The Second Department of Orthopedics, Hebei Chest Hospital, Hebei Shijiazhuang 050041, China
  • Received:2023-10-28 Published:2024-04-05
  • Corresponding author: Wei Chen
引用本文:

权元元, 丁凯, 王海程, 李彦霖, 张一凡, 张建志, 陈伟. 骨小梁的形态结构和生物力学性能研究进展[J]. 中华老年骨科与康复电子杂志, 2024, 10(02): 123-128.

Yuanyuan Quan, Kai Ding, Haicheng Wang, Yanlin Li, Yifan Zhang, Jianzhi Zhang, Wei Chen. Research progress on morphological structure and biomechanical properties of trabeculae[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2024, 10(02): 123-128.

骨小梁在人体骨骼系统中具有重要的力学支撑和应力传导作用。正确全面理解骨小梁的形态结构和生物力学性能对于肌肉-骨骼系统等疾病的临床诊断和治疗方面具有重要的指导意义。在过去的十年,影像学、生物力学和有限元分析技术取得了前所未有的进展,也有助于我们更加正确全面地了解骨小梁。但骨小梁具有多孔性和非均匀性等结构特点,使研究其形态结构和生物力学性能十分困难。本文就其作一综述。

Trabecular bones have important mechanical support and stress conduction in the human skeletal system. A correct and comprehensive understanding of the morphological structure and biomechanical properties of trabecular bones is of great guiding significance for the clinical diagnosis and treatment of diseases such as musculoskeletal system. Over the past decade, unprecedented advances in imaging, biomechanics, and finite element analysis have helped us to better understand trabeculae. However, the structural characteristics of trabecular bones such as heterogeneity and porosity make it difficult to study the structural morphology and mechanical properties of trabeculae. This article provides a review of them.

7
Keaveny TM, Wachtel EF, Guo XE, et al. Mechanical behavior of damaged trabecular bone [J]. J Biomech, 1994, 27(11): 1309-1318.
8
Eswaran SK, Gupta A, Adams MF, et al. Cortical and trabecular load sharing in the human vertebral body [J]. J Bone Miner Res, 2006, 21(2): 307-314.
9
Nawathe S, Nguyen BP, Barzanian N, et al. Cortical and trabecular load sharing in the human femoral neck [J]. J Biomech, 2015, 48(5): 816-822.
10
von Meyer GH. The classic: The architecture of the trabecular bone (tenth contribution on the mechanics of the human skeletal framework) [J]. Clin Orthop Relat Res, 2011, 469(11): 3079-3084.
11
Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure [J]. J Bone Joint Surg Am, 1977, 59(7): 954-962.
12
Smith MA, Dyson SJ, Murray RC. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock [J]. Equine Vet J, 2012, 44(6): 684-691.
13
Liang X, Zhang ZY, Gu JP, et al. Comparison of micro-CT and cone beam CT on the feasibility of assessing trabecular structures in mandibular condyle [J]. Dentomaxillofac Radiol, 2017, 46(5): 20160435.
14
Callens SJP, Tourolle Né Betts DC, Müller R, et al. The local and global geometry of trabecular bone [J]. Acta Biomater, 2021, 130: 343-361.
15
林华,包丽华.骨质疏松性骨折的骨损害[J].中华医学杂志, 2022, 102(13): 903-907.
16
Sornay-Rendu E, Munoz F, Garnero P, et al. Identification of osteopenic women at high risk of fracture: the OFELY study [J]. J Bone Miner Res, 2005, 20(10): 1813-1819.
17
Wang J, Kazakia GJ, Zhou B, et al. Distinct tissue mineral density in plate- and rod-like trabeculae of human trabecular bone [J]. J Bone Miner Res, 2015, 30(9): 1641-1650.
18
Liu XS, Walker MD, McMahon DJ, et al. Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women [J]. J Bone Miner Res, 2011, 26(8): 1783-1792.
19
Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone [J]. J Bone Miner Res, 2008, 23(2): 223-235.
20
Liu XS, Stein EM, Zhou B, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures Independent of DXA measurements [J]. J Bone Miner Res, 2012, 27(2): 263-272.
21
Liu XS, Cohen A, Shane E, et al. Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis [J]. J Bone Miner Res, 2010, 25(7): 1496-1505.
22
Yeh OC, Keaveny TM. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone [J]. J Orthop Res, 2001, 19(6): 1001-1007.
23
Zhang L, Sugamori KS, Claridge C, et al. Overexpression of GαS in murine osteoblasts in vivo leads to increased bone mass and decreased bone quality [J]. J Bone Miner Res, 2017, 32(11): 2171-2181.
24
Akbar W, Imtiaz H, Halima A, et al. Proximal femur Histo-Morphological changes among hip fracture in elderly patients [J]. J Ayub Med Coll Abbottabad, 2020, 32(1): 91-93.
25
Gross T, Pahr DH, Zysset PK. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations [J]. Biomech Model Mechanobiol, 2013, 12(4): 793-800.
26
Liu XS, Sajda P, Saha PK, et al. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone [J]. J Bone Miner Res, 2006, 21(10): 1608-1617.
27
Zhou B, Liu XS, Wang J, et al. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS) [J]. J Biomech, 2014, 47(3): 702-708.
28
Fang GH, Ji BH, Liu XS, et al. Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique [J]. Comput Methods Biomech Biomed Engin, 2010, 13(5): 605-615.
29
朱燕宾,陈伟,叶丹丹,等.股骨近端N三角理论及股骨近端仿生髓内钉(PFNB)的设计理念[J].中华老年骨科与康复电子杂志, 2021, 07(5): 257-259.
30
Takechi H. Trabecular architecture of the knee joint [J]. Acta Orthop Scand, 1977, 48(6): 673-681.
31
Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee [J]. J Bone Miner Res, 1987, 2(6): 595-610.
32
Maquer G, Musy SN, Wandel J, et al. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables [J]. J Bone Miner Res, 2015, 30(6): 1000-1008.
33
Lee AT, Williams AA, Lee JL, et al. Trapezium trabecular morphology in carpometacarpal arthritis [J]. J Hand Surg Am, 2013, 38(2): 309-315.
34
Hölzer A, Pietschmann MF, Rösl C, et al. The interrelation of trabecular microstructural parameters of the greater tubercle measured for different species [J]. J Orthop Res, 2012, 30(3): 429-434.
35
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, et al. Biomechanics and mechanobiology of trabecular bone: a review [J]. J Biomech Eng, 2015, 137(1): 0108021-01080215.
36
Nyman JS, Even JL, Jo CH, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone [J]. Bone, 2011, 48(4): 733-740.
37
Cowin SC, Hegedus DH. Bone remodeling I: theory of adaptive elasticity [J]. J Elast, 1976, 6(3): 313-326.
38
Cesar R, Bravo-Castillero J, Ramos RR, et al. Relating mechanical properties of vertebral trabecular bones to osteoporosis [J]. Comput Methods Biomech Biomed Engin, 2020, 23(2): 54-68.
1
张英泽.老年骨质疏松性骨折的防治焦点[J].中华老年骨科与康复电子杂志, 2021, 7(1): 1.
2
朱燕宾,赵阔,张奇,等.推进骨瓣技术在胫骨高位截骨术治疗膝关节骨性关节炎中的初步研究[J].中华老年骨科与康复电子杂志, 2021, 7(3): 129-131.
3
Li M, Zhao K, Ding K, et al. Titanium alloy gamma nail versus biodegradable Magnesium alloy bionic gamma nail for treating intertrochanteric fractures: a finite element analysis [J]. Orthop Surg, 2021, 13(5): 1513-1520.
4
Ding K, Yang WJ, Zhu J, et al. Titanium alloy cannulated screws and biodegradable Magnesium alloy bionic cannulated screws for treatment of femoral neck fractures: a finite element analysis [J]. J Orthop Surg Res, 2021, 16(1): 511.
5
Cun YW, Dou CH, Tian SY, et al. Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis [J]. Int Orthop, 2020, 44(3): 551-559.
6
Harada Y, Wevers HW, Cooke TD. Distribution of bone strength in the proximal tibia [J]. J Arthroplasty, 1988, 3(2): 167-175.
39
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone [J]. J Biomech, 1998, 31(7): 601-608.
40
Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation [J]. J Biomech, 1996, 29(10): 1309-1317.
41
Cheal EJ, Snyder BD, Nunamaker DM, et al. Trabecular bone remodeling around smooth and porous implants in an equine patellar model [J]. J Biomech, 1987, 20(11/12): 1121-1134.
42
Fyhrie DP, Carter DR. Femoral head apparent density distribution predicted from bone stresses [J]. J Biomech, 1990, 23(1): 1-10.
43
Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis [J]. J Biomech Eng, 1991, 113(4): 361-365.
44
Guerado E, Cruz E, Cano JR, et al. Bone mineral density aspects in the femoral neck of hip fracture patients [J]. Injury, 2016, 47 Suppl 1: S21-S24.
45
Renders GAP, Mulder L, Langenbach GEJ, et al. Biomechanical effect of mineral heterogeneity in trabecular bone [J]. J Biomech, 2008, 41(13): 2793-2798.
46
Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bone fragility [J]. Osteoporos Int, 2008, 19(9): 1251-1265.
47
Roux JP, Wegrzyn J, Boutroy S, et al. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study [J]. Osteoporos Int, 2013, 24(9): 2455-2460.
48
Shevroja Enisa, Lamy Olivier, Kohlmeier Lynn, et al. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice [J]. J Clin Densitom, 2017, 20(3): 334-345.
49
Sanyal A, Gupta A, Bayraktar HH, et al. Shear strength behavior of human trabecular bone [J]. J Biomech, 2012, 45(15): 2513-2519.
50
Mccalden RW, Mcgeough JA, Court-Brown CM. Age-related changes in the compressive strength of cancellous bone.The relative importance of changes in density and trabecular architecture [J]. J Bone Joint Surg Am, 1997, 79(3): 421-427.
51
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site [J]. J Biomech, 2001, 34(5): 569-577.
52
Nazarian A, Stauber M, Zurakowski D, et al. The interaction of microstructure and volume fraction in predicting failure in cancellous bone [J]. Bone, 2006, 39(6): 1196-1202.
53
Guenoun D, Pithioux M, Souplet JC, et al. Assessment of proximal femur microarchitecture using ultra-high field MRI at 7 Tesla [J]. Diagn Interv Imaging, 2020, 101(1): 45-53.
54
Nazarian A, Muller J, Zurakowski D, et al. Densitometric, morphometric and mechanical distributions in the human proximal femur [J]. J Biomech, 2007, 40(11): 2573-2579.
55
Cui WQ, Won YY, Baek MH, et al. Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae [J]. Osteoporos Int, 2008, 19(11): 1579-1587.
56
Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites [J]. Acta Mater, 2013, 61(14): 5198-5215.
57
Zhao HX, Liang WH. A novel comby scaffold with improved mechanical strength for bone tissue engineering [J]. Mater Lett, 2017, 194: 220-223.
58
Benhamou CL. Effects of osteoporosis medications on bone quality [J]. J Bone Spine, 2007, 74(1): 39-47.
59
Cheung JTM, An KN, Zhang M. Consequences of partial and total plantar fascia release: a finite element study [J]. Foot Ankle Int, 2006, 27(2): 125-132.
60
Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone [J]. Med Eng Phys, 1995, 17(5): 347-355.
61
Hobatho MC, Rho JY, Ashman RB. Anatomical variation of human cancellous bone mechanical properties in vitro [J]. Stud Health Technol Inform, 1997, 40: 157-173.
62
Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements [J]. J Biomech, 1993, 26(2): 111-119.
63
Ashman RB, Rho JY. Elastic modulus of trabecular bone material [J]. J Biomech, 1988, 21(3): 177-181.
64
Turner CH, Rho J, Takano Y, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques [J]. J Biomech, 1999, 32(4): 437-441.
65
Nicholson PH, Cheng XG, Lowet G, et al. Structural and material mechanical properties of human vertebral cancellous bone [J]. Med Eng Phys, 1997, 19(8): 729-737.
66
van Rietbergen B, Weinans H, Huiskes R, et al. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models [J]. J Biomech, 1995, 28(1): 69-81.
67
Lees S. A model for bone hardness [J]. J Biomech, 1981, 14(8): 561-567.
68
王建朝,殷兵,李升,等.胫骨近端松质骨显微硬度的分布特征[J].中华骨科杂志, 2019, 39(19): 1208-1214.
69
Sonoda N, Chosa E, Totoribe K, et al. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method [J]. J Orthop Sci, 2003, 8(4): 505-513.
70
Paley D, Pfeil J. Principles of deformity correction around the knee [J]. Orthop, 2000, 29(1): 18-38.
71
Sasaki N, Nakayama Y, Yoshikawa M, et al. Stress relaxation function of bone and bone collagen [J]. J Biomech, 1993, 26(12): 1369-1376.
72
Novitskaya E, Zin C, Chang N, et al. Creep of trabecular bone from the human proximal tibia [J]. Mater Sci Eng C Mater Biol Appl, 2014, 40: 219-227.
73
Iyo T, Maki Y, Sasaki N, et al. Anisotropic viscoelastic properties of cortical bone [J]. J Biomech, 2004, 37(9): 1433-1437.
74
Yadav RN, Sihota P, Neradi D, et al. Effects of type 2 diabetes on the viscoelastic behavior of human trabecular bone [J]. Med Eng Phys, 2022, 104: 103810.
75
O'callaghan P, Szarko M, Wang Y, et al. Effects of bone damage on creep behaviours of human vertebral trabeculae [J]. Bone, 2018, 106: 204-210.
76
Baba H, Maezawa Y, Kamitani K, et al. Osteoporotic vertebral collapse with late neurological complications [J]. Paraplegia, 1995, 33(5): 281-289.
77
Ito Y, Hasegawa Y, Toda K, et al. Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture [J]. Spine J, 2002, 2(2): 101-106.
78
Palepu V, Rayaprolu SD, Nagaraja S. Differences in trabecular bone, cortical shell, and endplate microstructure across the lumbar spine [J]. Int J Spine Surg, 2019, 13(4): 361-370.
79
Wang Y, Owoc JS, Boyd SK, et al. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing [J]. Bone, 2013, 56(2): 249-254.
80
Kaiser J, Allaire B, Fein PM, et al. Correspondence between bone mineral density and intervertebral disc degeneration across age and sex [J]. Arch Osteoporos, 2018, 13(1): 123.
81
Goldstein SA, Wilson DL, Sonstegard DA, et al. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location [J]. J Biomech, 1983, 16(12): 965-969.
82
Brown TD, Ferguson ABJ. Mechanical property distributions in the cancellous bone of the human proximal femur [J]. Acta Orthop Scand, 1980, 51(3): 429-437.
83
Auger JD, Frings N, Wu YQ, et al. Trabecular architecture and mechanical heterogeneity effects on vertebral body strength [J]. Curr Osteoporos Rep, 2020, 18(6): 716-726.
84
Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength [J]. Bone, 2007, 41(6): 946-957.
85
Vom Scheidt A, Grisolia Seifert EF, Pokrant C, et al. Subregional areal bone mineral density (aBMD) is a better predictor of heterogeneity in trabecular microstructure of vertebrae in young and aged women than subregional trabecular bone score (TBS) [J]. Bone, 2019, 122: 156-165.
86
Hussein AI, Jackman TM, Morgan SR, et al. The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength [J]. Osteoporos Int, 2013, 24(12): 3021-3030.
87
Kim DG, Hunt CA, Zauel R, et al. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies [J]. Ann Biomed Eng, 2007, 35(11): 1907-1913.
88
Wegrzyn J, Roux JP, Arlot ME, et al. Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae [J]. J Bone Miner Res, 2010, 25(11): 2324-2331.
89
Yerramshetty J, Kim DG, Yeni YN. Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae [J]. J Biomech Eng, 2009, 131(9): 094501.
[1] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[2] 邓玖征, 袁野, 朱剑津, 何大炜, 赵喆, 赵锋, 孔德敬, 潘勇卫. 基于成人掌骨形态学数据设计的掌骨弹性髓内针治疗掌骨骨折的生物力学研究[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 330-335.
[3] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[4] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[5] 潘超, 张博, 韩磊, 刘俊阳, 崔鹏, 闫兵山, 田旭, 刘林涛, 东靖明. 肩锁关节脱位治疗的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(02): 186-191.
[6] 王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.
[7] 陈奇, 沈子龙, 温向伟, 王晨, 高奥飞, 丁明强, 余嘉文, 潘海乐. 自体髌骨股四头肌肌腱治疗家兔巨大肩袖损伤的实验研究[J]. 中华肩肘外科电子杂志, 2022, 10(03): 214-220.
[8] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[9] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[10] 孙阳, 杨帅, 贾晋瑄, 杜震, 周凌峰, 魏贤振. 电针联合等速训练对THA术后髋关节生物力学的影响[J]. 中华老年骨科与康复电子杂志, 2024, 10(02): 103-110.
[11] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[12] 陈纪宝, 鞠玉亮, 管士伟, 杨家凤, 周峰, 张晋, 刘炜, 盈梅. 股骨颈动力交叉钉与空心拉力钉对Pauwels Ⅲ型股骨颈骨折治疗稳定性的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(02): 65-73.
[13] 杜兵, 马腾, 路遥, 张聪明, 许毅博, 黄强, 姬帅, 李明, 任程, 王谦, 张堃, 李忠. 新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 333-338.
[14] 商科, 汪义奎, 刘备, 刘伟. Chevron截骨、Scarf截骨对中度踇外翻患者的治疗效果及生物力学的影响[J]. 中华临床医师杂志(电子版), 2021, 15(11): 858-864.
[15] 李刚, 白若濛, 黄琳, 李松果. 兔眼角膜交联术后基质重塑对角膜生物力学稳定性的影响[J]. 中华临床医师杂志(电子版), 2021, 15(07): 537-541.
阅读次数
全文


摘要