切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2024, Vol. 10 ›› Issue (04) : 243 -250. doi: 10.3877/cma.j.issn.2096-0263.2024.04.008

综述

腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用
李彦霖1, 王海程2, 权元元3, 张一凡2, 陈伟2,()   
  1. 1. 300450 天津市,天津市滨海新区中医医院康复科;050001 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心
    2. 050001 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心
    3. 050001 石家庄,河北省骨科研究所;河北省骨科生物力学重点实验室;河北医科大学第三医院创伤急救中心;041000 临汾,临汾职业技术学院医学系
  • 收稿日期:2023-10-21 出版日期:2024-08-05
  • 通信作者: 陈伟
  • 基金资助:
    国家自然科学基金面上项目(82072447); 河北省自然科学基金杰出青年项目(H2021206329)

Biomechanical characteristics of lumbar trabecular bone and its application in the treatment of osteoporotic fractures

Yanlin Li1, Haicheng Wang2, Yuanyuan Quan3, Yifan Zhang2, Wei Chen2,()   

  1. 1. Department of Rehabilitation, Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, China; Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
    2. Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
    3. Orthopedic Research Institution of Hebei Province,; Key Laboratory of Biomechanics of Hebei Province,; Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Medicine, Linfen Vocational and Technical College, Linfen 041000, China
  • Received:2023-10-21 Published:2024-08-05
  • Corresponding author: Wei Chen
引用本文:

李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.

Yanlin Li, Haicheng Wang, Yuanyuan Quan, Yifan Zhang, Wei Chen. Biomechanical characteristics of lumbar trabecular bone and its application in the treatment of osteoporotic fractures[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2024, 10(04): 243-250.

伴随中国社会的进步及人口老龄化加剧,骨质疏松性骨折快速增多。文章详细探讨了骨小梁生物力学及其在椎体骨质疏松骨折治疗中的应用。椎体是骨质疏松骨折最常见的部位,其主要由松质骨构成。文章首先介绍了椎体松质骨的宏观结构和生物力学特性。而后介绍了骨小梁的微结构参数对骨小梁的形态特征及力学性质的重要作用。重点介绍了常用于定量描述骨小梁微结构的三维形态学参数,及骨小梁异质性、在空间上的连接方向、年龄增长、性别对其力学性质的影响。继而介绍骨质疏松性腰椎压缩骨折的传统诊断及创新诊断方式。在治疗方面,文章概述了现如今应用于临床的多种治疗骨质疏松性骨折术式的优缺点,包括椎体成形术、椎体融合术和经皮椎弓根钉内固定术等。最后介绍了新兴技术3D打印在脊柱手术中的创新应用,如使用3D打印多孔金属内植物和仿生内固定物。未来将3D打印技术与传统治疗方法相结合,可以达到更好的治疗效果和提高生活质量。

With the progress of Chinese society and the intensification of population aging, osteoporotic fractures are rapidly increasing. The article discusses in detail the biomechanics of trabeculae and its application in the treatment of vertebral osteoporotic fractures. The vertebral body is the most common site of osteoporotic fractures, mainly composed of trabecular bone. The article first introduces the macroscopic structure and biomechanical properties of vertebral trabecular bone. Then, the important role of microstructure parameters of bone trabeculae in the morphological characteristics and mechanical properties of bone trabeculae was introduced. The focus is on the three-dimensional morphological parameters commonly used to quantitatively describe the microstructure of bone trabeculae, as well as the effects of bone trabecular heterogeneity, spatial connectivity direction, age growth, and gender on their mechanical properties. Subsequently, traditional and innovative diagnostic methods for osteoporotic lumbar vertebral compression fractures will be introduced. In terms of treatment, the article provides an overview of the advantages and disadvantages of various clinical treatments for osteoporotic fractures, including vertebroplasty, vertebral fusion, and percutaneous pedicle screw fixation. Finally, the innovative application of emerging technology 3D printing in spinal surgery was introduced, such as the use of 3D printing porous metal implants and biomimetic internal fixation devices. Combining 3D printing technology with traditional treatment methods can achieve better therapeutic effects and improve quality of life.

图1 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中应用的图形目录
1
Lems WF, Paccou J, Zhang J, et al. Vertebral fracture: epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services [J]. Osteoporos Int, 2021, 32(3): 399-411.
2
Al Taha K, Lauper N, Bauer D E, et al. Multidisciplinary and Coordinated Management of Osteoporotic Vertebral Compression Fractures: Current State of the Art[J]. J Clin Med, 2024, 13(4):930.
3
Chen W, Lv H, Liu S, et al. National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals[J]. Lancet Glob Health, 2017, 5(8): e807-e817.
4
徐梦圆,李姿萱,宋渐石,等.降钙素受体rs1801197基因多态性与骨质疏松症相关性的Meta分析[J].中华老年骨科与康复电子杂志,2021,7(2):122-128
5
Beall DP, Olan WJ, Kakad P, et al. Economic analysis of Kiva VCF treatment system compared to balloon kyphoplasty using randomized Kiva safety and effectiveness trial (KAST) data [J]. Pain Physician, 2015, 18(3): E299-E306.
6
Johannesdottir F, Putman MS, Burnett-Bowie SAM, et al. Age-Related changes in bone density, microarchitecture, and strength in postmenopausal black and white women: the SWAN longitudinal HR-pQCT study [J]. J Bone Miner Res, 2022, 37(1): 41-51.
7
Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 2017, 88: 467-498.
8
Vaughan TJ, McCarthy CT, McNamara LM. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone [J]. J Mech Behav Biomed Mater, 2012, 12 (8): 50-62.
9
Sopon M, Oleksik V, Roman M, et al. Biomechanical study of the osteoporotic spine fracture: optical approach [J]. J Pers Med, 2021, 11(9): 907.
10
Lomelí-Rivas A, Larrinúa-Betancourt J E. [Biomechanics of the lumbar spine: a clinical approach][J]. Acta Ortop Mex, 2019, 33(3): 185-191.
11
Osterhoff G, Morgan EF, Shefelbine SJ, et al. Bone mechanical properties and changes with osteoporosis [J]. Injury, 2016, 47 Suppl 2(Suppl 2): S11-S20.
12
Auger JD, Frings N, Wu YQ, et al. Trabecular architecture and mechanical heterogeneity effects on vertebral body strength [J]. Curr Osteoporos Rep, 2020, 18(6): 716-726.
13
Jiang Y, Zhao J, Rosen C, et al. Perspectives on bone mechanical properties and adaptive response to mechanical challenge [J]. J Clin Densitom, 1999, 2(4): 423-433.
14
Gong H, Wang LZ, Fan YB, et al. Apparent- and Tissue-Level yield behaviors of L4 vertebral trabecular bone and their associations with microarchitectures [J]. Ann Biomed Eng, 2016, 44(4): 1204-1223.
15
Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone [J]. J Bone Miner Res, 2008, 23(2): 223-235.
16
Hildebrand T, Laib A, Müller R, et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus [J]. J Bone Miner Res, 1999, 14(7): 1167-1174.
17
于琼,吕思敏,崔燎, et al.辅酶Q10对环磷酰胺大鼠股骨的显微结构和生物力学的影响[J].中国药理学通报, 2015, 31(03): 421-425.
18
Kaiser J, Allaire B, Fein PM, et al. Correspondence between bone mineral density and intervertebral disc degeneration across age and sex [J]. Arch Osteoporos, 2018, 13(1): 123.
19
Wang Y, Owoc JS, Boyd SK, et al. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing [J]. Bone, 2013, 56(2): 249-254.
20
Vom Scheidt A, Grisolia Seifert EF, Pokrant C, et al. Subregional areal bone mineral density (aBMD) is a better predictor of heterogeneity in trabecular microstructure of vertebrae in young and aged women than subregional trabecular bone score (TBS) [J]. Bone, 2019, 122(5): 156-165.
21
Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength [J]. Bone, 2007, 41(6): 946-957.
22
Zhao F, Kirby M, Roy A, et al. Commonality in the microarchitecture of trabecular bone: A preliminary study [J]. Bone, 2018, 111(6): 59-70.
23
Liu XS, Bevill G, Keaveny TM, et al. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods [J]. J Biomech, 2009, 42(3): 249-256.
24
Lopes D, Martins-Cruz C, Oliveira MB, et al. Bone physiology as inspiration for tissue regenerative therapies [J]. Biomaterials, 2018, 185(12): 240-275.
25
Shi XT, Liu XS, Wang X, et al. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone [J]. Bone, 2010, 46(5): 1260-1266.
26
Fields AJ, Lee GL, Liu XS, et al. Influence of vertical trabeculae on the compressive strength of the human vertebra [J]. J Bone Miner Res, 2011, 26(2): 263-269.
27
Zhou B, Liu XS, Wang J, et al. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS) [J]. J Biomech, 2014, 47(3): 702-708.
28
Liu XS, Sajda P, Saha PK, et al. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone [J]. J Bone Miner Res, 2006, 21(10): 1608-1617.
29
Yu YE, Hu YJ, Zhou B, et al. Microstructure determines Apparent-Level mechanics despite Tissue-Level anisotropy and heterogeneity of individual plates and Rods in normal human trabecular bone [J]. J Bone Miner Res, 2021, 36(9): 1796-1807.
30
Jiang R, Liu GM, Bai HT, et al. Age-related differences in the biological parameters of vertebral cancellous bone from Chinese women [J]. Chin Med J (Engl), 2013, 126(20): 3828-3832.
31
Chen H, Shoumura S, Emura S, et al. Regional variations of vertebral trabecular bone microstructure with age and gender [J]. Osteoporos Int, 2008, 19(10): 1473-1483.
32
Gong H, Zhang M, Yeung HY, et al. Regional variations in microstructural properties of vertebral trabeculae with aging [J]. J Bone Miner Metab, 2005, 23(2): 174-180.
33
Chen HY, Kubo KY. Bone three-dimensional microstructural features of the common osteoporotic fracture sites [J]. World J Orthop, 2014, 5(4): 486-495.
34
Thomsen JS, Niklassen AS, Ebbesen EN, et al. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men [J]. Bone, 2013, 57(1): 47-55.
35
Ritzel H, Amling M, Pösl M, et al. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens [J]. J Bone Miner Res, 1997, 12(1): 89-95.
36
Thomsen JS, Ebbesen EN, Mosekilde LI. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method [J]. Bone, 2002, 31(1): 136-142.
37
雷涛,申勇.老年骨质疏松性椎体骨折若干问题的探讨[J].中华老年骨科与康复电子杂志, 2017, 3(4): 248-251.
38
Yu TM, Zhang XY, Liu JH, et al. Superior cortical screw in osteoporotic lumbar vertebrae: A biomechanics and microstructure-based study [J]. Clin Biomech (Bristol, Avon), 2018, 53(3): 14-21.
39
Roman M, Brown C, Richardson W, et al. The development of a clinical decision making algorithm for detection of osteoporotic vertebral compression fracture or wedge deformity [J]. J Man Manip Ther, 2010, 18(1): 44-49.
40
Yan JW, Liao Z, Yu YF. Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture [J]. Eur J Med Res, 2022, 27(1): 142.
41
Chappard D, Baslé MF, Legrand E, et al. New laboratory tools in the assessment of bone quality [J]. Osteoporos Int, 2011, 22(8): 2225-2240.
42
Oefner C, Riemer E, Funke K, et al. Determination of anisotropic elastic parameters from morphological parameters of cancellous bone for osteoporotic lumbar spine [J]. Med Biol Eng Comput, 2022, 60(1): 263-278.
43
Ammann P, Rizzoli R. Bone strength and its determinants [J]. Osteoporosis International, 2003, 14(3): 13-18.
44
Ramchand S K, Seeman E. The Influence of Cortical Porosity on the Strength of Bone During Growth and Advancing Age[J]. Curr Osteoporos Rep, 2018, 16(5): 561-572..
45
Pothuaud L, Barthe N, Krieg MA, et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study [J]. J Clin Densitom, 2009, 12(2): 170-176.
46
Ulivieri FM, Silva BC, Sardanelli F, et al. Utility of the trabecular bone score (TBS) in secondary osteoporosis [J]. Endocrine, 2014, 47(2): 435-448.
47
Muschitz C, Kocijan R, Haschka J, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures [J]. Bone, 2015, 79(10): 259-266.
48
Roux JP, Wegrzyn J, Boutroy S, et al. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study [J]. Osteoporos Int, 2013, 24(9): 2455-2460.
49
Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise [J]. J Clin Densitom, 2013, 16(3): 287-296.
50
Lee JE, Kim KM, Kim LK, et al. Comparisons of TBS and lumbar spine BMD in the associations with vertebral fractures according to the T-scores: A cross-sectional observation [J]. Bone, 2017, 105(12): 269-275.
51
Shevroja E, Lamy O, Kohlmeier L, et al. Use of trabecular bone score (TBS) as a complementary approach to dual-energy x-ray absorptiometry (DXA) for fracture risk assessment in clinical practice [J]. J Clin Densitom, 2017, 20(3): 334-345.
52
Hsu Y, Hsieh TJ, Ho CH, et al. Effect of compression fracture on trabecular bone score at lumbar spine [J]. Osteoporos Int, 2021, 32(5): 961-970.
53
Messina C, Rinaudo L, Cesana BM, et al. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study [J]. Osteoporosis International, 2021, 32(1): 85-91.
54
Hart NH, Nimphius S, Rantalainen T, et al. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action [J]. J Musculoskelet Neuronal Interact, 2017, 17(3): 114-139.
55
Ulivieri FM, Piodi LP, Grossi E, et al. The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: A proposal from an observational study [J]. PLoS One, 2018, 13(1): e0190477.
56
Ulivieri FM, Rebagliati GAA, Piodi LP, et al. Usefulness of bone microarchitectural and geometric DXA-derived parameters in haemophilic patients [J]. Haemophilia, 2018, 24(6): 980-987.
57
Rodari G, Scuvera G, Ulivieri FM, et al. Progressive bone impairment with age and pubertal development in neurofibromatosis type I [J]. Arch Osteoporos, 2018, 13(1): 93.
58
Singhal V, Bredella MA. Marrow adipose tissue imaging in humans [J]. Bone, 2019, 118(1): 69-76.
59
Schwartz A V. Marrow fat and bone: review of clinical findings[J]. Front Endocrinol (Lausanne), 2015, 6: 40.
60
Li XJ, Schwartz AV. MRI assessment of bone marrow composition in osteoporosis [J]. Curr Osteoporos Rep, 2020, 18(1): 57-66.
61
Woods GN, Ewing SK, Sigurdsson S, et al. Greater bone marrow adiposity predicts bone loss in older women [J]. J Bone Miner Res, 2020, 35(2): 326-332.
62
Ohlsson C, Sundh D, Wallerek A, et al. Cortical bone area predicts incident fractures independently of areal bone mineral density in older men [J]. J Clin Endocrinol Metab, 2017, 102(2): 516-524.
63
Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries [J]. Spine (Phila Pa 1976), 1983, 8(8): 817-831.
64
Hussein AI, Louzeiro DT, Unnikrishnan GU, et al. Differences in trabecular microarchitecture and simplified boundary conditions limit the accuracy of quantitative computed Tomography-Based finite element models of vertebral failure [J]. J Biomech Eng, 2018, 140(2): 0210041-02100411.
65
Gustafson HM, Melnyk AD, Siegmund GP, et al. Damage identification on vertebral bodies during compressive loading using digital image correlation [J]. Spine (Phila Pa 1976), 2017, 42(22): E1289-E1296.
66
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone [J]. J Biomech, 1998, 31(7): 601-608.
67
Homminga J, Weinans H, Gowin W, et al. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution [J]. Spine (Phila Pa 1976), 2001, 26(14): 1555-1561.
68
Cesar R, Bravo-Castillero J, Ramos RR, et al. Relating mechanical properties of vertebral trabecular bones to osteoporosis [J]. Comput Methods Biomech Biomed Engin, 2020, 23(2): 54-68.
69
Svedbom A, Ivergård M, Hernlund E, et al. Epidemiology and economic burden of osteoporosis in Switzerland [J]. Arch Osteoporos, 2014, 9(187): 187.
70
Fields AJ, Keaveny TM. Trabecular architecture and vertebral fragility in osteoporosis [J]. Curr Osteoporos Rep, 2012, 10(2): 132-140.
71
Gong H, Zhang M, Qin L, et al. Regional variations in the apparent and tissue-level mechanical parameters of vertebral trabecular bone with aging using micro-finite element analysis [J]. Ann Biomed Eng, 2007, 35(9): 1622-1631.
72
权元元,丁凯,王海程, et al.骨小梁的形态结构和生物力学性能研究进展[J].中华老年骨科与康复电子杂志, 2024, 10(2): 123-128.
73
Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis [J]. J Bone Miner Res, 2000, 15(1): 13-19.
74
McDonnell P, McHugh PE, O'Mahoney D. Vertebral osteoporosis and trabecular bone quality [J]. Ann Biomed Eng, 2007, 35(2): 170-189.
75
Wehrli FW, Gomberg BR, Saha PK, et al. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis [J]. J Bone Miner Res, 2001, 16(8): 1520-1531.
76
Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone [J]. Bone, 2000, 26(3): 291-295.
77
Laib A, Kumer JL, Majumdar S, et al. The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT [J]. Osteoporos Int, 2001, 12(11): 936-941.
78
Liu XS, Stein EM, Zhou B, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures Independent of DXA measurements [J]. J Bone Miner Res, 2012, 27(2): 263-272.
79
Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions [J]. Bone, 1993, 14(2): 173-182.
80
Odgaard A, Jensen EB, Gundersen HJ. Estimation of structural anisotropy based on volume orientation. A new concept [J]. J Microsc, 1990, 157(Pt 2): 149-162.
81
Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality [J]. Osteoporos Int, 2002, 13(2): 97-104.
82
Burr DB. Targeted and nontargeted remodeling [J]. Bone, 2002, 30(1): 2-4.
83
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains [J]. Eur J Morphol, 2005, 42(1/2): 13-21.
84
Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone [J]. Bone, 2007, 40(5): 1259-1264.
85
Wang X, Niebur GL. Microdamage propagation in trabecular bone due to changes in loading mode [J]. J Biomech, 2006, 39(5): 781-790.
86
Ruspi ML, Chehrassan M, Faldini C, et al. In vitro experimental studies and numerical modeling to investigate the biomechanical effects of surgical interventions on the spine [J]. Crit Rev Biomed Eng, 2019, 47(4): 295-322.
87
Tobert DG, Davis BJ, Annis P, et al. The impact of the lordosis distribution index on failure after surgical treatment of adult spinal deformity [J]. Spine J, 2020, 20(8): 1261-1266.
88
Fang Z, Giambini H, Zeng H, et al. Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model [J]. Tissue Eng Part A, 2014, 20(5/6): 1096-1102.
89
Edidin AA, Ong KL, Lau E, et al. Mortality risk for operated and nonoperated vertebral fracture patients in the Medicare population [J]. J Bone Miner Res, 2011, 26(7): 1617-1626.
90
Jacquot F, Letellier T, Atchabahian A, et al. Balloon reduction and cement fixation in calcaneal articular fractures: a five-year experience [J]. Int Orthop, 2013, 37(5): 905-910.
91
Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty [J]. Spine (Phila Pa 1976), 2001, 26(14): 1547-1554.
92
Berton A, Salvatore G, Giambini H, et al. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae [J]. J Spinal Cord Med, 2020, 43(1): 39-45.
93
Tang BQ, Cui LB, Chen XM, et al. Risk factors for cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: an analysis of 1456 vertebrae augmented by Low-Viscosity bone cement [J]. Spine (Phila Pa 1976), 2021, 46(4): 216-222.
94
于亮,赵刘军.骨质疏松性椎体压缩骨折手术治疗进展及穿刺并发症[J].中国骨伤,2024,37(01):3-6.
95
王建华.骨质疏松症治疗药物的分类与用药选择[J].中华老年骨科与康复电子杂志, 2019, 5(5): 297-300.
96
夏维波,余卫,王以朋, et al.原发性骨质疏松症社区诊疗指导原则[J].中国全科医学, 2019, 22(10): 1125-1132.
97
马迅,郝帅.仿生学在脊柱外科中的应用[J].中华外科杂志, 2022, 60(3): 208-212.
98
Galbusera F, Volkheimer D, Reitmaier S, et al. Pedicle screw loosening: a clinically relevant complication? [J]. Eur Spine J, 2015, 24(5): 1005-1016.
99
袁磊,陈仲强,曾岩,等.胸腰椎椎弓根螺钉内固定术后螺钉松动的研究进展[J].中国脊柱脊髓杂志, 2017, 27(8): 756-762.
100
Tong YX, Kaplan DJ, Spivak JM, et al. Three-dimensional printing in spine surgery: a review of current applications [J]. Spine J, 2020, 20(6): 833-846.
101
Gadia A, Shah K, Nene A. Emergence of Three-Dimensional printing technology and its utility in spine surgery [J]. Asian Spine J, 2018, 12(2): 365-371.
102
Perna F, Borghi R, Pilla F, et al. Pedicle screw insertion techniques: an update and review of the literature [J]. Musculoskelet Surg, 2016, 100(3): 165-169.
103
Cho W, Job AV, Chen J, et al. A review of current clinical applications of Three-Dimensional printing in spine surgery [J]. Asian Spine J, 2018, 12(1): 171-177.
104
Cecchinato R, Berjano P, Zerbi A, et al. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial [J]. Eur Spine J, 2019, 28(7): 1712-1723.
105
McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous Titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model [J]. Spine J, 2018, 18(7): 1250-1260.
106
Rosenzweig DH, Carelli E, Steffen T, et al. 3D-Printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration [J]. Int J Mol Sci, 2015, 16(7): 15118-15135.
107
Sun BB, Lian MF, Han Y, et al. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus Reconstruction [J]. Bioact Mater, 2021, 6(1): 179-190.
108
Cui XF, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology [J]. Tissue Eng Part A, 2012, 18(11/12): 1304-1312.
109
李昃鹏,薛静波. 3D打印多孔钛合金孔隙结构对骨诱导性能影响的研究进展[J].中国骨科临床与基础研究杂志, 2019, 11(6): 358-363.
110
Yang J, Cai H, Lv J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting [J]. Spine (Phila Pa 1976), 2014, 39(8): E486-E492.
111
Choy WJ, Mobbs RJ, Wilcox B, et al. Reconstruction of thoracic spine using a personalized 3D-Printed vertebral body in adolescent with T9 primary bone tumor [J]. World Neurosurg, 2017, 105(9): 1032.e13-1032.e17.
112
周驰雨,初同伟. 3D打印技术在脊柱外科中的应用进展[J].中国医学物理学杂志, 2019, 36(01): 60-64.
113
Li M, Zhao K, Ding K, et al. Titanium alloy gamma nail versus biodegradable Magnesium alloy bionic gamma nail for treating intertrochanteric fractures: a finite element analysis [J]. Orthop Surg, 2021,13(5): 1513-1520.
114
Ding K, Yang WJ, Zhu J, et al. Titanium alloy cannulated screws and biodegradable Magnesium alloy bionic cannulated screws for treatment of femoral neck fractures: a finite element analysis [J]. J Orthop Surg Res, 2021, 16(1): 511.
115
Cun YW, Dou CH, Tian SY, et al. Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis [J]. Int Orthop, 2020, 44(3): 551-559.
116
Attarilar S, Ebrahimi M, Djavanroodi F, et al. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures [J]. Int J Bioprint, 2021, 7(1): 306.
117
张英泽.老年骨质疏松性骨折的防治焦点[J].中华老年骨科与康复电子杂志, 2021, 7(1): 1.
118
Cun Y, Dou C, Tian S, et al. Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis[J]. Int Orthop, 2020, 44(3): 551-559.
[1] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[2] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[3] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[4] 刘凯, 李萌, 姬文晨, 杨卫周, 刘俭涛. 全髋关节置换联合自体松质骨移植治疗老年股骨颈骨折[J]. 中华关节外科杂志(电子版), 2022, 16(06): 786-789.
[5] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[6] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[7] 王曦, 关鹏飞. 双钢板内固定治疗肱骨远1/3骨折的有限元分析及基于肘关节功能和肘关节活动度评估疗效[J]. 中华肩肘外科电子杂志, 2024, 12(03): 230-237.
[8] 王鸿禹, 王飞, 高广涵, 郑子天, 薛庆云. 肱骨大结节骨微结构对肩袖修复影响的研究进展[J]. 中华肩肘外科电子杂志, 2024, 12(03): 281-285.
[9] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[10] 潘超, 张博, 韩磊, 刘俊阳, 崔鹏, 闫兵山, 田旭, 刘林涛, 东靖明. 肩锁关节脱位治疗的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(02): 186-191.
[11] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[12] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[13] 权元元, 丁凯, 王海程, 李彦霖, 张一凡, 张建志, 陈伟. 骨小梁的形态结构和生物力学性能研究进展[J]. 中华老年骨科与康复电子杂志, 2024, 10(02): 123-128.
[14] 孙阳, 杨帅, 贾晋瑄, 杜震, 周凌峰, 魏贤振. 电针联合等速训练对THA术后髋关节生物力学的影响[J]. 中华老年骨科与康复电子杂志, 2024, 10(02): 103-110.
[15] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
阅读次数
全文


摘要