切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2020, Vol. 06 ›› Issue (01) : 18 -24. doi: 10.3877/cma.j.issn.2096-0263.2020.01.005

所属专题: 骨科学 文献

股骨骨折

关于温哥华C型股骨假体周围骨折采用不同长度锁定钢板固定的生物力学研究
罗鹏远1, 赵阔1, 王忠正1, 尹英超1, 张瑞鹏1, 郭家良1, 侯志勇1,(), 张英泽1   
  1. 1. 050051 石家庄,河北医科大学第三医院创伤急救中心,河北省骨科研究所,河北省骨科生物力学重点实验室
  • 收稿日期:2020-01-05 出版日期:2020-02-05
  • 通信作者: 侯志勇
  • 基金资助:
    国自然基金(81572162)

Biomechanical comparison of Vancouver C type periprosthetic femoral fractures Fixed with Locking Plate Of Different Length

Pengyuan Luo1, Kuo Zhao1, Zhongzheng Wang1, Yingchao Yin1, Ruipeng Zhang1, Jialiang Guo1, Zhiyong Hou1,(), Yingze Zhang1   

  1. 1. Department of Orthopaedic Surgery, the Third Hospital of HebeiMedical University, Orthopedic Research Institution of Hebei Province, KeyLaboratory of Orthopedic Biomechanics of Hebei Province, Shijiazhuang 050051,China
  • Received:2020-01-05 Published:2020-02-05
  • Corresponding author: Zhiyong Hou
引用本文:

罗鹏远, 赵阔, 王忠正, 尹英超, 张瑞鹏, 郭家良, 侯志勇, 张英泽. 关于温哥华C型股骨假体周围骨折采用不同长度锁定钢板固定的生物力学研究[J/OL]. 中华老年骨科与康复电子杂志, 2020, 06(01): 18-24.

Pengyuan Luo, Kuo Zhao, Zhongzheng Wang, Yingchao Yin, Ruipeng Zhang, Jialiang Guo, Zhiyong Hou, Yingze Zhang. Biomechanical comparison of Vancouver C type periprosthetic femoral fractures Fixed with Locking Plate Of Different Length[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2020, 06(01): 18-24.

目的

通过比较四种不同长度的锁定钢板在治疗温哥华C型股骨假体周围骨折的生物力学实验中的表现,来分析锁定钢板相对于股骨假体柄远端的位置与产生的刚度和应力集中情况的关系。

方法

选取10对成人新鲜股骨标本,随机均分为四组,制作温哥华C型股骨假体周围骨折模型,以四种不同长度的锁定钢板固定:A组,钢板最近端双皮质锁定螺钉距离假体尖端1个股骨直径;B组,钢板最近端双皮质锁定螺钉与假体尖端平齐;C组,钢板最近端单皮质锁钉与假体尖端重叠1个股骨直径;D组,钢板最近端单皮质锁钉与假体尖端重叠2个股骨直径。分别进行轴向压载实验、扭转实验、内外四点侧弯实验及前后四点侧弯实验,记录各组数据并进行统计学分析;最后进行循环负载实验,记录骨折情况。

结果

各组在各实验中表现出的刚度值有显著差异,D组刚度值最大(P<0.05);在循环负载实验中,D组骨折线分布于股骨假体尖端、近端锁钉以及钢板远端附近,A、C组的骨折线集中在近端锁钉与股骨假体尖端之间,B组骨折线集中在股骨假体尖端与钢板顶端的线性区域内,结果显示D组应力集中程度比A、B、C三组低(P<0.05)。

结论

在使用锁定钢板治疗温哥华C型股骨假体周围骨折时,随着钢板长度增加,内固定稳定性提高;锁定钢板与股骨假体柄尖端重叠固定不会增加应力集中,反而随着钢板与股骨假体重叠区域增加,应力显著分散。

Objective

Comparing the biomechanical differences of four different locking plate fixation of different lengths in the treatment of Vancouver C type periprosthetic femoral fractures, the relationship between the position of locking plates relative to the distal end of the femoral stem and the stiffness and stress concentration was analyzed.

Methods

Ten pairs of fresh adult femoral specimens were randomly divided into four groups. Then, the modle of Vancouver C type periprosthetic femoral fractures was established. Fixed with locking plates of four different lengths: in group A, the proximal bicortical locking screw of the plate was 1 femoral diameter to the tip of the prosthesis; in group B, the proximal bicortical locking screw of the plate was the same level with the tip of the prosthesis; in group C, the proximal single cortical locking screw of the plate overlapped with the tip of the prosthesis by 1 femoral diameter; in group D, the proximal single cortical locking screw of the plate overlapped with the tip of the prosthesis by 2 femoral diameter. All of the models are performed by axial ballast test, torsion test, four-point bend test inside and outside, and four-point bend test front and behind. The data of each group were recorded and analyzed statisticallyby SPSS software. Finally, the cyclic loading test was carried out and the fracture line distribution was recorded.

Results

The stiffness of each group showed significant difference, and the stiffness of group D were the largest in all tests (P<0.05). In the cyclic loading experiment, the fracture of group D were distributed near the tips of femoral prosthesis, proximal locking nails and distal plates. The fracture of group A and C were concentrated between proximal locking nails and the tips of femoral prosthesis. The fracture of group B were concentrated in the linear region between the tips of femoral prosthesis and the tips of steel plates. The results showed that the stress concentration of group D was lower than that of group A, B and C (P<0.05).

Conclusions

In the treatment of Vancouver Ctype periprosthetic femoral fractures with locking plate, the stability of internal fixation increases with the plate length; the overlapping fixation of locking plate and the tip of femoral stem does not increase the stress concentration, and the stress is significantly dispersed, with increasing with the overlapping area of plate and femoral prosthesis.

表1 四种不同长度锁定钢板的内固定方式
图5 四种不同锁定钢板内固定结构
图9 前后四点弯曲实验
表2 四种长度锁定钢板治疗温哥华C型股骨假体周围骨折时的刚度值(±s
表3 四种长度锁定钢板治疗温哥华C型股骨假体周围骨折时刚度值的两两比较
图10~13 A~D组股骨标本破坏后图片
1
Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement [J]. Lancet, 2007, 370(9597): 1508-1519.
2
Tsiridis E, Pavlou G, Venkatesh R, et al. Periprosthetic femoral fractures around hip arthroplasty: current concepts in their management [J]. Hip Int, 2009, 19(2): 75-86.
3
Della Rocca GJ, Leung KS, Pape HC. Periprostethicfracures:epidomiolgy and future projections [J]. J Orthop Trauma, 2011 (25): s66-70.
4
MoretaJ, Aguirre U, Saez de Ugarte O, et al.Functional and radiological outcome of periprostethic femoral fracuresafterhip arthroplasty [J]. Injury, 2015, 46:292-298.
5
Dennis MG, Simon JA, Kummer FJ, et al. Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques [J]. J Arthroplasty, 2000, 15(4): 523-528.
6
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 [J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
7
Moore RE, Baldwin K, Austin MS, et al. A systematic review of open reduction and internal fixation of periprosthetic femur fractures with or without allograft strut, cerclage, and locked plates [J]. J Arthroplasty, 2014, 29(5): 872-876.
8
Sheth NP, Brown NM, Moric M, et al. Operative treatment of early Peri-Prosthetic femur fractures following primary total hip arthroplasty [J]. J Arthroplasty, 2013, 28(2): 286-291.
9
Singh JA, Jensen MR, Harmnsen SW, et al. Are gender, comorbidity, and obesity risk factors for postoperative periprosthetic fractures after primary total hip arthroplasty? [J]. J Arthroplasty 2013, 28(1):126-131.
10
Duncan CP, Masri B. Fractures of the femur after hip replacement [J]. Instr Course Lect, 1995,44: 293-304.
11
Giaretta S,Momoli A,Porcelli G, et al. Diagnosis andmanagement of periprosthetic femoral fractures after Hip arthroplasty[J]. Injury, 2019, 50Suppl 2: 29-33. .
12
Lindahl H, Malchau H, Herberts P, et al. Periprosthetic femoral fracturesclassification and demographics of 1049 periprosthetic femoral fractures from the Swedish National Hip Arthroplasty Register[J]. J Arthroplasty, 2005, 20(7):857-865.
13
Lindahl H, Garellick G, Regner H, et al. Three hundred and twenty-one periprosthetic femoral fractures [J]. J Bone Joint SurgAm, 2006, 88A(6): 1215-1222.
14
Zdero R, Walker R, Waddell JP, et al. Biomechanical evaluation periprosthetic femoral fracture fixation [J]. J Bone Joint Surg Am, 2008, 90(5):1068-1077.
15
Demos HA, Briones MS, White PH, et al. A biomechanical comparison of periprosthetic femoral fracture fixation in normal and osteoporotic cadaveric bone [J]. J Arthroplasty, 2012, 27(5): 783-788.
16
Fulkerson E, Koval K, Preston CF, et al. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems [J]. J Orthop Trauma, 2006, 20(2): 89-93.
17
Tower SS, Beals RK. Fractures of the femur after hip replacement: the Oregon experience [J]. Orthop Clin North Am, 1999, 30(2):235-247.
18
Kubiak EN, Haller JM, Kemper DD, et al. Does the lateral plate need to overlap the stem to mitigate stress concentration when treating Vancouver C periprosthetic supracondylar femur fracture? [J]. J Arthroplasty, 2015, 30(1): 104-108.
19
Chakravarthy J, Bansal R, Cooper J. Locking plate osteosynthesis for Vancouver Type B1 and Type C periprosthetic fractures of femur: a report on 12 patients [J]. Injury, 2007, 38(6): 725-733.
20
Fulkerson E, Tejwani N, Stuchin S, et al. Management of periprosthetic femur fractures with a first Generation locking plate [J]. Injury, 2007, 38(8): 965-972.
21
Chakravarthy J, Bansal R, Cooper J. Locking plate osteosynthesis for Vancouver type B1 and type C periprosthetic fractures of femur:a report on 12 patients[J]. Injury, 2007, 38(6):725-733.
22
Howell JR, Masri BA, Garbuz DS, et al. Cable plates and onlay allografts in periprosthetic femoral fractures after hip replacement: laboratory and clinical observations [J]. Instr Course Lect, 2004, 53: 99-110.
23
Mamczak CN, Gardner MJ, Bolhofner B, et al. Interprosthetic femoral fractures [J]. J Orthop Trauma, 2010, 24(12): 740-744.
24
Walcher MG, Giesinger K, Du Sart R, et al. Plate positioning in periprosthetic or interprosthetic femur fractures with stable Implants-A biomechanical study [J]. J Arthroplasty, 2016, 31(12): 2894-2899.
25
Khalafi A, Curtiss S, Hazelwood S, et al. The effect of plate rotation on the stiffness of femoral LISS: a mechanical study [J]. J Orthop Trauma, 2006, 20(8): 542-546.
26
Jaakkola JI, Douglas WL, Moore T, et al. Supracondylar femur fracture fixation Mechanical comparison of the 95°condylar side plate and screw versus 95°angled blade plate [J]. Acta OrthopScand, 2002, 73(1): 72-76.
27
Weiser L, Korecki MA, Sellenschloh K, et al. The role of inter-prosthetic distance,cortical thickness and bone mineral density in the development of interprosthetic fractures of the femur: a biomechanical cadaver study[J]. Bone Joint J, 2014, 96-b(10):1378.
28
Iesaka K, Kummer FJ, Di Cesare PE. Stress risers between two ipsilateral intramedullary stems: a finite-element and biomechanical analysis [J]. J Arthroplasty, 2005, 20(3): 386-391.
29
Soenen M, Baracchi M, De Corte R, et al. Stemmed TKA in a femur with a total hip arthroplasty: is there a safe distance between the stem tips? [J]. J Arthroplasty, 2013, 28(8): 1437-1445.
30
Harris T, Ruth J, Szivek J, et al. The effect of implant overlap on the mechanical properties of the femur [J]. J Trauma, 2003, 54(5):930-935.
31
Kubiak EN, Fulkerson E, Strauss E, et al. The evolution of locked plates [J]. J Bone Joint Surg Am, 2006, 88 Suppl4:189-200.
32
Egol KA, Kubiak EN, Fulkerson E, et al. Biomechanics of locked plates and screws [J]. J Orthop Trauma, 2004, 18(8): 488-493.
[1] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[2] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[3] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[4] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[5] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[6] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[7] 王曦, 关鹏飞. 双钢板内固定治疗肱骨远1/3骨折的有限元分析及基于肘关节功能和肘关节活动度评估疗效[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 230-237.
[8] 李明震, 韩勇, 路庆森, 王甫. 肱骨近端骨折中内侧锁定钢板重建内侧柱的有限元分析[J/OL]. 中华肩肘外科电子杂志, 2023, 11(04): 321-329.
[9] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[10] 李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.
[11] 张一凡, 姚孟轩, 王海程, 张宇钦, 史泰龙, 吕红芝, 秦士吉. 点接触固定器的发展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(03): 178-183.
[12] 权元元, 丁凯, 王海程, 李彦霖, 张一凡, 张建志, 陈伟. 骨小梁的形态结构和生物力学性能研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 123-128.
[13] 孙阳, 杨帅, 贾晋瑄, 杜震, 周凌峰, 魏贤振. 电针联合等速训练对THA术后髋关节生物力学的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 103-110.
[14] 张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.
[15] 喻蓉, 周伟力, 雷青, 陈松, 陈立, 刘峰, 丁州, 阳宏奇, 王康, 王大鹏. 改良的内外侧环抱锁定钢板在复杂胫骨平台骨折治疗中的临床疗效观察[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 764-770.
阅读次数
全文


摘要