切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (05) : 315 -320. doi: 10.3877/cma.j.issn.2096-0263.2023.05.010

综述

膝关节生物力学标志物预测膝关节炎研究进展
张子砚, 曾红, 许苑晶, 郭璐琦, 王金武(), 王少白, 任富超, 缪伟强, 戴尅戎, 王茹   
  1. 200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室;200438 上海体育学院"运动健身科技"省部共建教育部重点实验室
    200011 上海交通大学医学院附属第九人民医院康复医学科
    200240 上海交通大学生物医学工程学院
    200438 上海体育学院"运动健身科技"省部共建教育部重点实验室
    200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室;200240 上海交通大学生物医学工程学院
    261053 潍坊医学院康复医学院
    200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室
  • 收稿日期:2022-08-08 出版日期:2023-10-05
  • 通信作者: 王金武
  • 基金资助:
    国家科技部重点研发计划项目(No.2020YFB1711500); 国家自然科学基金(No.82072412); 上海市科委项目(No.19441917500); 上海市科委项目(No.19441908700); 上海交通大学医学院附属第九人民医院临床研究型MDT项目(No.201914); 上海市科委项目(No.22015820100); 上海交通大学医学院附属第九人民医院教学培育项目(JYJX03202103)

A review of biomechanical markers of knee predicting the progression of knee osteoarthritis

Ziyan Zhang, Hong Zeng, Yuanjing Xu, Luqi Guo, Jinwu Wang(), Shaobai Wang, Fuchao Ren, Weiqiang Miao, Kerong Dai, Ru Wang   

  1. Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai University of Sport, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai 200438, China
    Department of Rehabilitation, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    School of Biomedical Engineering, Shanghai Jiaotong University,Shanghai 200240, China
    Shanghai University of Sport, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai 200438, China
    Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; School of Biomedical Engineering, Shanghai Jiaotong University,Shanghai 200240, China
    Weifang Medical College, School of Rehabilitation Medicine, Weifang 261053, China
    Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
  • Received:2022-08-08 Published:2023-10-05
  • Corresponding author: Jinwu Wang
引用本文:

张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.

Ziyan Zhang, Hong Zeng, Yuanjing Xu, Luqi Guo, Jinwu Wang, Shaobai Wang, Fuchao Ren, Weiqiang Miao, Kerong Dai, Ru Wang. A review of biomechanical markers of knee predicting the progression of knee osteoarthritis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(05): 315-320.

膝关节炎是影响老年人活动与参与的常见疾病,目前临床上对其诊断与随访主要依赖X线和Kellgren/Lawrence(K/L)分级,缺少生物力学维度的随访与科研,较难预测膝关节炎的进展和功能改变。本文通过综述基于X线距离和角度测量、基于X线图像处理和基于生物力学参数的各生物力学标志物对膝关节炎进展预测的贡献,说明生物力学标志物对预测膝关节炎进展的有效性和当前的局限性,为进一步进行相关研究提供帮助。

Knee osteoarthritis is a common disease that affects the activities and participation of the elderly. At present, its clinical diagnosis and follow-up mainly rely on X-ray and Kellgren/Lawrence (K/L) grade, and lack of follow-up and scientific research of biomechanical dimensions, which is difficult to predict the progression and functional changes of knee osteoarthritis. The paper reviewed contribution of the distance and angle measurement based on X-ray, X-ray image processing and the biomechanical markers based on biomechanical parameters for prediction of knee osteoarthritis progress. To show the biomechanical markers' effectiveness and limitations to predict knee osteoarthritis progress and effectiveness of the current limitations and help for further research.

图2 下肢力线的改变导致在胫骨平台上关节软骨的承重区域发生改变
表1 临床诊断膝骨关节炎的标准(2018版膝骨关节炎临床诊疗指南)
图4 使用便携式红外光学运动捕捉设备进行数据采集
1
薛庆云,王坤正,裴福兴,等.中国40岁以上人群原发性骨关节炎患病状况调查[J].中华骨科杂志, 2015, 35(12): 1206-1212.
2
Bauer DC, Hunter DJ, Abramson SB, et al. Classification of osteoarthritis biomarkers: a proposed approach [J]. Osteoarthritis Cartilage, 2006, 14(8): 723-727.
3
Jones L, Beynon MJ, Holt CA, et al. An application of the Dempster-Shafer theory of evidence to the classification of knee function and detection of improvement due to total knee replacement surgery [J]. J Biomech, 2006, 39(13): 2512-2520.
4
Wahyuningrum RT, Purnama IKE, Verkerke GJ, et al. A novel method for determining the Femoral-Tibial Angle of Knee Osteoarthritis on X-ray radiographs: data from the Osteoarthritis Initiative [J]. Heliyon, 2020, 6(8): e04433.
5
Issın A, Öner A, Koçkara N, et al. Shortest time interval for detecting the progression of knee osteoarthritis on consecutive X-rays [J]. Turk J Phys Med Rehabil, 2020, 66(4): 383-387.
6
Roux CH, Mazieres B, Verrouil E, et al. Femoro-tibial knee osteoarthritis: One or two X-rays? Results from a population-based study [J]. Joint Bone Spine, 2016, 83(1): 37-42.
7
Gossec L, Jordan JM, Mazzuca SA, et al. Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force [J]. Osteoarthritis Cartilage, 2008, 16(7): 742-748.
8
Duddy J, Kirwan JR, Szebeny B, et al. A comparison of the semiflexed(MTP)view with the standing extended view(SEV)in the radiographic assessment of knee osteoarthritis in a busy routine X-ray department [J]. Rheumatology (Oxford), 2005, 44(3): 349-351.
9
Kan H, Arai Y, Kobayashi M, et al. Fixed-flexion view X-ray of the knee superior in detection and follow-up of knee osteoarthritis [J]. Medicine (Baltimore), 2017, 96(49): e9126.
10
Buckland-Wright JC, Bird CF, Ritter-Hrncirik CA, et al. X-ray technologists' reproducibility from automated measurements of the medial tibiofemoral joint space width in knee osteoarthritis for a multicenter, multinational clinical trial [J]. J Rheumatol, 2003, 30(2): 329-338.
11
Cicuttini F, Wluka A, Hankin J, et al. Longitudinal study of the relationship between knee angle and tibiofemoral cartilage volume in subjects with knee osteoarthritis [J]. Rheumatology (Oxford), 2004, 43(3): 321-324.
12
Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis [J]. Curr Opin Rheumatol, 2006, 18(5): 514-518.
13
Brouwer GM, van Tol AW, Bergink AP, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee [J]. Arthritis Rheum, 2007, 56(4): 1204-1211.
14
Deng XT, Hu HZ, Zhu J, et al. Associations between periosteal reaction of proximal tibial and medial compartment knee osteoarthritis [J]. Orthop Surg, 2021, 13(4): 1327-1335.
15
Han XQ, Cui JQ, Xie K, et al. Association between knee alignment, osteoarthritis disease severity, and subchondral trabecular bone microarchitecture in patients with knee osteoarthritis: a cross-sectional study [J]. Arthritis Res Ther, 2020, 22(1): 203.
16
Zhang ZQ, Liu C, Li ZW, et al. Residual mild varus alignment and neutral mechanical alignment have similar outcome after total knee arthroplasty for varus osteoarthritis in Five-Year Follow-Up [J]. J Knee Surg, 2020, 33(2): 200-205.
17
Bellemans J, Colyn W, Vandenneucker H, et al. The chitranjan ranawat award: is neutral mechanical alignment normal for all patients? the concept of constitutional varus [J]. Clin Orthop Relat Res, 2012, 470(1): 45-53.
18
Fahlman L, Sangeorzan E, Chheda N, et al. Older adults without radiographic knee osteoarthritis: knee alignment and knee range of motion [J]. Clin Med Insights Arthritis Musculoskelet Disord, 2014, 7: 1-11.
19
Saini D, Chand T, Chouhan DK, et al. A comparative analysis of automatic classification and grading methods for knee osteoarthritis focussing on X-ray images [J]. Biocybernetics and Biomedical Engineering, 2021, 41(2): 419-444.
20
Saleem M, Farid MS, Saleem S, et al. X-ray image analysis for automated knee osteoarthritis detection [J]. Signal Image and Video Processing, 2020, 14(6): 1079-1087.
21
Dessinger GM, LaCour MT, Dennis DA, et al. Can an OA knee brace effectively offload the medial condyle? an in vivo fluoroscopic study [J]. J Arthroplasty, 2021, 36(4): 1455-1461.
22
Nagai K, Yang SM, Fu FH, et al. Unloader knee brace increases medial compartment joint space during gait in knee osteoarthritis patients [J]. Knee Surg Sports Traumatol Arthrosc, 2018, 6(7 suppl4): 2325967118S00119.
23
Wang WJ, Tsai TY, Tian F, et al. High-speed fluoroscopic imaging for investigation of three-dimensional knee kinematics before and after marathon running [J]. Gait Posture, 2021, 88: 231-237.
24
Liu F, Kozanek M, Hosseini A, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait [J]. J Biomech, 2010, 43(4): 658-665.
25
Nadaud MC, Komistek RD, Mahfouz MR, et al. In vivo three-dimensional determination of the effectiveness of the osteoarthritic knee brace: a multiple brace analysis [J]. J Bone Joint Surg Am, 2005, 87: 114-119.
26
Ulrich B, Cosendey K, Jolles BM, et al. Decreasing the ambulatory knee adduction moment without increasing the knee flexion moment individually through modifications in footprint parameters: A feasibility study for a dual kinetic change in healthy subjects [J]. J Biomech, 2020, 111: 110004.
27
Fong ICD, Li WSC, Tai WKJ, et al. Effect of foot progression angle adjustment on the knee adduction moment and knee joint contact force in runners with and without knee osteoarthritis [J]. Gait Posture, 2018, 61: 34-39.
28
Jackson B, Gordon KE, Chang AH. Immediate and short-term effects of real-time knee adduction moment feedback on the peak and cumulative knee load during walking [J]. J Orthop Res, 2018, 36(1): 397-404.
29
Chehab EF, Favre J, Erhart-Hledik JC, et al. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis [J]. Osteoarthritis Cartilage, 2014, 22(11): 1833-1839.
30
Astephen JL, Deluzio KJ, Caldwell GE, et al. Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity [J]. J Orthop Res, 2008, 26(3): 332-341.
31
Fregly BJ, Reinbolt JA, Rooney KL, et al. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation [J]. IEEE Trans Biomed Eng, 2007, 54(9): 1687-1695.
32
Astephen JL, Deluzio KJ, Caldwell GE, et al. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels [J]. J Biomech, 2008, 41(4): 868-876.
33
Lustig S, Magnussen RA, Cheze L, et al. The KneeKG system: a review of the literature [J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(4): 633-638.
34
王文锦,田斐,李柠薇,等.新型膝关节运动分析系统的研制及临床应用[J].中华关节外科杂志:电子版, 2020, 14(1): 78-84.
35
Zhong GQ, Zeng XL, Xie Y, et al. Prevalence and dynamic characteristics of generalized joint hypermobility in college students [J]. Gait Posture, 2021, 84: 254-259.
36
Zeng XL, Ma LM, Lin ZF, et al. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system [J]. Sci Rep, 2017, 7(1): 4080.
37
Kumar D, Manal KT, Rudolph KS. Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis [J]. Osteoarthritis Cartilage, 2013, 21(2): 298-305.
38
Kumar D, Swanik CB, Reisman DS, et al. Individuals with medial knee osteoarthritis show neuromuscular adaptation when perturbed during walking despite functional and structural impairments [J]. J Appl Physiol (1985), 2014, 116(1): 13-23.
39
Nagano YSH, Naito K, Saho Y, et al. Association between in vivo knee kinematics during gait and the severity of knee osteoarthritis [J]. Knee, 2012, 19(5): 628-632.
40
Zifchock RA, Kirane Y, Hillstrom H, et al. Are joint structure and function related to medial knee OA pain? A pilot study [J]. Clin Orthop Relat Res, 2011, 469(10): 2866-2873.
41
Chang AH, Chmiel JS, Moisio KC, et al. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis [J]. Osteoarthritis Cartilage, 2013, 21(11): 1668-1673.
42
Hurwitz DE, Ryals AB, Case JP, et al. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain [J]. J Orthop Res, 2002, 20(1): 101-107.
[1] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[2] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[3] 王桂冠, 徐杰. 运动学对线在全膝关节置换术中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 726-731.
[4] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[5] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[6] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[7] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[8] 张起尧, 刘子文. 复杂腹壁疝的解剖和生物力学基础[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 674-676.
[9] 熊廷伟, 褚志刚, 吕发金. 肺磨玻璃结节自然衍变规律与CT鉴别诊断研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 290-292.
[10] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[11] 潘超, 张博, 韩磊, 刘俊阳, 崔鹏, 闫兵山, 田旭, 刘林涛, 东靖明. 肩锁关节脱位治疗的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(02): 186-191.
[12] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[13] 许新意, 岳婧婧, 高玲, 曾禹沙, 李婧婧, 冯克, 薛雅红. 经会阴超声与MRI排粪造影诊断女性出口梗阻型便秘的临床价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 342-348.
[14] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[15] 黄文鹏, 刘晨晨, 侯佳蒙, 李莉明, 侯平, 肖晓燕, 高剑波. 眼部恶性多形性腺瘤43例临床病理及CT/MRI影像分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 5-9.
阅读次数
全文


摘要