切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (05) : 315 -320. doi: 10.3877/cma.j.issn.2096-0263.2023.05.010

综述

膝关节生物力学标志物预测膝关节炎研究进展
张子砚, 曾红, 许苑晶, 郭璐琦, 王金武(), 王少白, 任富超, 缪伟强, 戴尅戎, 王茹   
  1. 200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室;200438 上海体育学院"运动健身科技"省部共建教育部重点实验室
    200011 上海交通大学医学院附属第九人民医院康复医学科
    200240 上海交通大学生物医学工程学院
    200438 上海体育学院"运动健身科技"省部共建教育部重点实验室
    200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室;200240 上海交通大学生物医学工程学院
    261053 潍坊医学院康复医学院
    200011 上海交通大学医学院附属第九人民医院骨科,上海市骨科植入物重点实验室
  • 收稿日期:2022-08-08 出版日期:2023-10-05
  • 通信作者: 王金武
  • 基金资助:
    国家科技部重点研发计划项目(No.2020YFB1711500); 国家自然科学基金(No.82072412); 上海市科委项目(No.19441917500); 上海市科委项目(No.19441908700); 上海交通大学医学院附属第九人民医院临床研究型MDT项目(No.201914); 上海市科委项目(No.22015820100); 上海交通大学医学院附属第九人民医院教学培育项目(JYJX03202103)

A review of biomechanical markers of knee predicting the progression of knee osteoarthritis

Ziyan Zhang, Hong Zeng, Yuanjing Xu, Luqi Guo, Jinwu Wang(), Shaobai Wang, Fuchao Ren, Weiqiang Miao, Kerong Dai, Ru Wang   

  1. Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai University of Sport, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai 200438, China
    Department of Rehabilitation, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    School of Biomedical Engineering, Shanghai Jiaotong University,Shanghai 200240, China
    Shanghai University of Sport, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai 200438, China
    Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; School of Biomedical Engineering, Shanghai Jiaotong University,Shanghai 200240, China
    Weifang Medical College, School of Rehabilitation Medicine, Weifang 261053, China
    Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
  • Received:2022-08-08 Published:2023-10-05
  • Corresponding author: Jinwu Wang
引用本文:

张子砚, 曾红, 许苑晶, 郭璐琦, 王金武, 王少白, 任富超, 缪伟强, 戴尅戎, 王茹. 膝关节生物力学标志物预测膝关节炎研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(05): 315-320.

Ziyan Zhang, Hong Zeng, Yuanjing Xu, Luqi Guo, Jinwu Wang, Shaobai Wang, Fuchao Ren, Weiqiang Miao, Kerong Dai, Ru Wang. A review of biomechanical markers of knee predicting the progression of knee osteoarthritis[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(05): 315-320.

膝关节炎是影响老年人活动与参与的常见疾病,目前临床上对其诊断与随访主要依赖X线和Kellgren/Lawrence(K/L)分级,缺少生物力学维度的随访与科研,较难预测膝关节炎的进展和功能改变。本文通过综述基于X线距离和角度测量、基于X线图像处理和基于生物力学参数的各生物力学标志物对膝关节炎进展预测的贡献,说明生物力学标志物对预测膝关节炎进展的有效性和当前的局限性,为进一步进行相关研究提供帮助。

Knee osteoarthritis is a common disease that affects the activities and participation of the elderly. At present, its clinical diagnosis and follow-up mainly rely on X-ray and Kellgren/Lawrence (K/L) grade, and lack of follow-up and scientific research of biomechanical dimensions, which is difficult to predict the progression and functional changes of knee osteoarthritis. The paper reviewed contribution of the distance and angle measurement based on X-ray, X-ray image processing and the biomechanical markers based on biomechanical parameters for prediction of knee osteoarthritis progress. To show the biomechanical markers' effectiveness and limitations to predict knee osteoarthritis progress and effectiveness of the current limitations and help for further research.

图2 下肢力线的改变导致在胫骨平台上关节软骨的承重区域发生改变
表1 临床诊断膝骨关节炎的标准(2018版膝骨关节炎临床诊疗指南)
图4 使用便携式红外光学运动捕捉设备进行数据采集
1
薛庆云,王坤正,裴福兴,等.中国40岁以上人群原发性骨关节炎患病状况调查[J].中华骨科杂志, 2015, 35(12): 1206-1212.
2
Bauer DC, Hunter DJ, Abramson SB, et al. Classification of osteoarthritis biomarkers: a proposed approach [J]. Osteoarthritis Cartilage, 2006, 14(8): 723-727.
3
Jones L, Beynon MJ, Holt CA, et al. An application of the Dempster-Shafer theory of evidence to the classification of knee function and detection of improvement due to total knee replacement surgery [J]. J Biomech, 2006, 39(13): 2512-2520.
4
Wahyuningrum RT, Purnama IKE, Verkerke GJ, et al. A novel method for determining the Femoral-Tibial Angle of Knee Osteoarthritis on X-ray radiographs: data from the Osteoarthritis Initiative [J]. Heliyon, 2020, 6(8): e04433.
5
Issın A, Öner A, Koçkara N, et al. Shortest time interval for detecting the progression of knee osteoarthritis on consecutive X-rays [J]. Turk J Phys Med Rehabil, 2020, 66(4): 383-387.
6
Roux CH, Mazieres B, Verrouil E, et al. Femoro-tibial knee osteoarthritis: One or two X-rays? Results from a population-based study [J]. Joint Bone Spine, 2016, 83(1): 37-42.
7
Gossec L, Jordan JM, Mazzuca SA, et al. Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force [J]. Osteoarthritis Cartilage, 2008, 16(7): 742-748.
8
Duddy J, Kirwan JR, Szebeny B, et al. A comparison of the semiflexed(MTP)view with the standing extended view(SEV)in the radiographic assessment of knee osteoarthritis in a busy routine X-ray department [J]. Rheumatology (Oxford), 2005, 44(3): 349-351.
9
Kan H, Arai Y, Kobayashi M, et al. Fixed-flexion view X-ray of the knee superior in detection and follow-up of knee osteoarthritis [J]. Medicine (Baltimore), 2017, 96(49): e9126.
10
Buckland-Wright JC, Bird CF, Ritter-Hrncirik CA, et al. X-ray technologists' reproducibility from automated measurements of the medial tibiofemoral joint space width in knee osteoarthritis for a multicenter, multinational clinical trial [J]. J Rheumatol, 2003, 30(2): 329-338.
11
Cicuttini F, Wluka A, Hankin J, et al. Longitudinal study of the relationship between knee angle and tibiofemoral cartilage volume in subjects with knee osteoarthritis [J]. Rheumatology (Oxford), 2004, 43(3): 321-324.
12
Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis [J]. Curr Opin Rheumatol, 2006, 18(5): 514-518.
13
Brouwer GM, van Tol AW, Bergink AP, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee [J]. Arthritis Rheum, 2007, 56(4): 1204-1211.
14
Deng XT, Hu HZ, Zhu J, et al. Associations between periosteal reaction of proximal tibial and medial compartment knee osteoarthritis [J]. Orthop Surg, 2021, 13(4): 1327-1335.
15
Han XQ, Cui JQ, Xie K, et al. Association between knee alignment, osteoarthritis disease severity, and subchondral trabecular bone microarchitecture in patients with knee osteoarthritis: a cross-sectional study [J]. Arthritis Res Ther, 2020, 22(1): 203.
16
Zhang ZQ, Liu C, Li ZW, et al. Residual mild varus alignment and neutral mechanical alignment have similar outcome after total knee arthroplasty for varus osteoarthritis in Five-Year Follow-Up [J]. J Knee Surg, 2020, 33(2): 200-205.
17
Bellemans J, Colyn W, Vandenneucker H, et al. The chitranjan ranawat award: is neutral mechanical alignment normal for all patients? the concept of constitutional varus [J]. Clin Orthop Relat Res, 2012, 470(1): 45-53.
18
Fahlman L, Sangeorzan E, Chheda N, et al. Older adults without radiographic knee osteoarthritis: knee alignment and knee range of motion [J]. Clin Med Insights Arthritis Musculoskelet Disord, 2014, 7: 1-11.
19
Saini D, Chand T, Chouhan DK, et al. A comparative analysis of automatic classification and grading methods for knee osteoarthritis focussing on X-ray images [J]. Biocybernetics and Biomedical Engineering, 2021, 41(2): 419-444.
20
Saleem M, Farid MS, Saleem S, et al. X-ray image analysis for automated knee osteoarthritis detection [J]. Signal Image and Video Processing, 2020, 14(6): 1079-1087.
21
Dessinger GM, LaCour MT, Dennis DA, et al. Can an OA knee brace effectively offload the medial condyle? an in vivo fluoroscopic study [J]. J Arthroplasty, 2021, 36(4): 1455-1461.
22
Nagai K, Yang SM, Fu FH, et al. Unloader knee brace increases medial compartment joint space during gait in knee osteoarthritis patients [J]. Knee Surg Sports Traumatol Arthrosc, 2018, 6(7 suppl4): 2325967118S00119.
23
Wang WJ, Tsai TY, Tian F, et al. High-speed fluoroscopic imaging for investigation of three-dimensional knee kinematics before and after marathon running [J]. Gait Posture, 2021, 88: 231-237.
24
Liu F, Kozanek M, Hosseini A, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait [J]. J Biomech, 2010, 43(4): 658-665.
25
Nadaud MC, Komistek RD, Mahfouz MR, et al. In vivo three-dimensional determination of the effectiveness of the osteoarthritic knee brace: a multiple brace analysis [J]. J Bone Joint Surg Am, 2005, 87: 114-119.
26
Ulrich B, Cosendey K, Jolles BM, et al. Decreasing the ambulatory knee adduction moment without increasing the knee flexion moment individually through modifications in footprint parameters: A feasibility study for a dual kinetic change in healthy subjects [J]. J Biomech, 2020, 111: 110004.
27
Fong ICD, Li WSC, Tai WKJ, et al. Effect of foot progression angle adjustment on the knee adduction moment and knee joint contact force in runners with and without knee osteoarthritis [J]. Gait Posture, 2018, 61: 34-39.
28
Jackson B, Gordon KE, Chang AH. Immediate and short-term effects of real-time knee adduction moment feedback on the peak and cumulative knee load during walking [J]. J Orthop Res, 2018, 36(1): 397-404.
29
Chehab EF, Favre J, Erhart-Hledik JC, et al. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis [J]. Osteoarthritis Cartilage, 2014, 22(11): 1833-1839.
30
Astephen JL, Deluzio KJ, Caldwell GE, et al. Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity [J]. J Orthop Res, 2008, 26(3): 332-341.
31
Fregly BJ, Reinbolt JA, Rooney KL, et al. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation [J]. IEEE Trans Biomed Eng, 2007, 54(9): 1687-1695.
32
Astephen JL, Deluzio KJ, Caldwell GE, et al. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels [J]. J Biomech, 2008, 41(4): 868-876.
33
Lustig S, Magnussen RA, Cheze L, et al. The KneeKG system: a review of the literature [J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(4): 633-638.
34
王文锦,田斐,李柠薇,等.新型膝关节运动分析系统的研制及临床应用[J].中华关节外科杂志:电子版, 2020, 14(1): 78-84.
35
Zhong GQ, Zeng XL, Xie Y, et al. Prevalence and dynamic characteristics of generalized joint hypermobility in college students [J]. Gait Posture, 2021, 84: 254-259.
36
Zeng XL, Ma LM, Lin ZF, et al. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system [J]. Sci Rep, 2017, 7(1): 4080.
37
Kumar D, Manal KT, Rudolph KS. Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis [J]. Osteoarthritis Cartilage, 2013, 21(2): 298-305.
38
Kumar D, Swanik CB, Reisman DS, et al. Individuals with medial knee osteoarthritis show neuromuscular adaptation when perturbed during walking despite functional and structural impairments [J]. J Appl Physiol (1985), 2014, 116(1): 13-23.
39
Nagano YSH, Naito K, Saho Y, et al. Association between in vivo knee kinematics during gait and the severity of knee osteoarthritis [J]. Knee, 2012, 19(5): 628-632.
40
Zifchock RA, Kirane Y, Hillstrom H, et al. Are joint structure and function related to medial knee OA pain? A pilot study [J]. Clin Orthop Relat Res, 2011, 469(10): 2866-2873.
41
Chang AH, Chmiel JS, Moisio KC, et al. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis [J]. Osteoarthritis Cartilage, 2013, 21(11): 1668-1673.
42
Hurwitz DE, Ryals AB, Case JP, et al. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain [J]. J Orthop Res, 2002, 20(1): 101-107.
[1] 郑永乐, 庞祖才, 陈家敏, 孙丙银. 骨碎补总黄酮抑制牵张成骨模型骨质疏松的作用研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 604-608.
[2] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[3] 蒋政, 郑楠, 毛彦杰, 何阿祥, 林蔚铭, 郭瀚, 刘语嫣, 臧慧, 王聪, 刘万军. 关于胫骨高位截骨术后髌股关节变化的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 398-404.
[4] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[5] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[6] 张琛朋, 王靖, 曾塬杰, 高鹏, 陈昕彤. 反式全肩关节置换术的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 373-376.
[7] 王曦, 关鹏飞. 双钢板内固定治疗肱骨远1/3骨折的有限元分析及基于肘关节功能和肘关节活动度评估疗效[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 230-237.
[8] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[9] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[10] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
[11] 李彦霖, 王海程, 权元元, 张一凡, 陈伟. 腰椎骨小梁生物力学特性及其在骨质疏松骨折治疗中的应用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 243-250.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
[14] 袁梦晨, 刘译阳, 赵帅, 陈林, 高宇, 肖晓燕, 尤亚茹, 梁何俊, 高剑波. 增强CT的列线图在鉴别EB病毒相关的胃淋巴上皮瘤样癌与胃腺癌中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 107-113.
[15] 孙兆男, 何江凯, 黄文鹏, 胡晓煜, 黄勇, 王霄英. 伪膜性结肠炎的CT表现及鉴别诊断[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 172-176.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?