切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2022, Vol. 08 ›› Issue (03) : 152 -158. doi: 10.3877/cma.j.issn.2096-0263.2022.03.005

基础研究

二甲胺四环素对小胶质细胞激活状态影响的研究
左安俊1, 欧振飞1, 王天瑞1, 丁磊1, 李天予1, 于腾波1,()   
  1. 1. 266100 青岛大学附属医院运动医学科
  • 收稿日期:2021-11-15 出版日期:2022-06-05
  • 通信作者: 于腾波
  • 基金资助:
    国家自然科学基金资助项目(31872310)

The effect of minocycline on the activation state of microglia

anjun Zuo1, zhenfei Ou1, tianrui Wang1, lei Ding1, tianyu Li1, tengbo Yu1,()   

  1. 1. The Affiliated Hospital of Qingdao University, Department of Sports Medicine, Qingdao 266100, China
  • Received:2021-11-15 Published:2022-06-05
  • Corresponding author: tengbo Yu
引用本文:

左安俊, 欧振飞, 王天瑞, 丁磊, 李天予, 于腾波. 二甲胺四环素对小胶质细胞激活状态影响的研究[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(03): 152-158.

anjun Zuo, zhenfei Ou, tianrui Wang, lei Ding, tianyu Li, tengbo Yu. The effect of minocycline on the activation state of microglia[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2022, 08(03): 152-158.

目的

探究二甲胺四环素对大鼠小胶质细胞M1、M2激活状态的研究。

方法

取10只Wistar大鼠脑组织,选取其小胶质细胞,以LPS及IL-4产生M1激活组和M2激活组,确定Notch信号通路对小胶质细胞M1激活途径及M2激活途径的调控作用,通过不同浓度二甲胺四环素干预Notch信号通路,调控小胶质细胞的激活状态,观察细胞膜特异性抗原CD16/32及CD206蛋白表达和细胞培养上清中TNF-α、IL-12、IL-10水平。

结果

成功诱导M1激活组和M2激活组,确定Notch信号通路对M1激活途径及M2激活途径起调控作用,二甲胺四环素在0 μg/ml、5 μg/ml、10 μg/ml、20 μg/ml浓度中,促使小胶质细胞TNF-α、IL-12分泌逐渐减少,IL-10分泌逐渐增多,CD16/32蛋白表达逐渐降低,CD206蛋白表达逐渐增加。

结论

二甲胺四环素能够抑制小胶质细胞向M1型极化,且对M2型极化过程没有影响,可以改善脊髓损伤患者的预后。

Objective

To investigate the activation status of minocycline on microglia M1 and M2 in rats.

Methods

The brain tissue of 10 Wistar rats was used to select microglia cells, and LPS and IL-4 were used to produce M1-activated group and M2-activated group to determine the regulatory effect of Notch signaling pathway on M1-activated pathway and M2-activated pathway of microglia. The Notch signaling pathway was interfered with different concentrations of minocycline to regulate the activation state of microglia. The expression of cell membrane specific antigen CD16/32 and CD206 and the levels of TNF-α, IL-12 and IL-10 in cell culture supernatant were observed.

Results

The M1 activation group and M2 activation group were successfully induced, and the Notch signaling pathway was determined to regulate the M1 activation pathway and M2 activation pathway. Minocycline promoted the secretion of TNF-α and IL-12 in microglia at 0 μg/mL, 5 μg/mL, 10 μg/mL and 20 μg/mL concentrations. The secretion of IL-10 increased gradually, the expression of CD16/32 decreased gradually, and the expression of CD206 increased gradually.

Conclusion

Minocycline can inhibit the polarization of microglia to M1-type and has no effect on M2-type polarization process, which can improve the prognosis of SCI patients.

图1~2 细胞培养。图1 M1激活组;图2 M2激活组
图3 M1激活组与M2激活组中TNF-α、IL-12、IL-10基础水平比较 注:“*”表示P<0.01
图4 M1激活组与M2激活组CD16/32及CD206基础水平比较 注:"*"表示P<0.01
表1 M1激活组与M2激活组中TNF-α、IL-12、IL-10基础水平比较(±s,pg/ml)
表2 M1激活组与M2激活组CD16/32及CD206基础水平比较(%,±s
图5 Notch信号通路调控下IL-12、TNF-α、IL-10水平比较 注:"*"表示P<0.01
图6 Notch信号通路调控下细胞膜CD16/32及CD206蛋白表达水平比较 注:"*"表示P<0.01
表3 Notch信号通路调控下IL-12、TNF-α、IL-10水平比较(±s,pg/ml)
表4 Notch信号通路调控下细胞膜CD16/32及CD206蛋白表达水平比较(±s,%)
图7 不同浓度二甲胺四环素对细胞存活率影响
图8 不同浓度二甲胺四环素对TNF-α、IL-12、IL-10水平影响比较 注:"*"表示与前组相比有差异P<0.01
图9 不同浓度二甲胺四环素对CD16/32及CD206蛋白水平影响比较 注:"*"表示与前组相比有差异P<0.01
表5 不同浓度二甲胺四环素对TNF-α、IL-12、IL-10水平影响比较(±s,pg/ml)
表6 不同浓度二甲胺四环素对CD16/32及CD206蛋白水平影响比较(±s,%)
1
李忠辉,于涛,张晓艳.椎弓根螺钉固定联合椎体成形术治疗老年胸腰段骨折的初步疗效观察[J].中华老年骨科与康复电子杂志, 2021, 7(1):7.
2
徐艳松,罗大卿,潘文辉,等.创伤性颈脊髓损伤的流行病学分析[J].中华急诊医学杂志, 2019, 028(001): 84-89.
3
Singh A, Tetreault L, Kalsi-Ryan S, et al. Global prevalence and incidence of traumatic spinal cord injury [J]. Clin Epidemiol, 2014, 6(6): 309-331.
4
Badhiwala JH, Christopher SA, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury [J]. J Neurosurg Spine, 2019, 30(1): 1-18.
5
王治乾,付明明,尹英超,等.新型冠状病毒肺炎疫情期间老年患者骨折流行病学特点分析[J].中华老年骨科与康复电子杂志,2020,6(01):3-9.
6
Ulndreaj A, Chio JC, Ahuja CS, et al. Modulating the immune response in spinal cord injury [J]. Expert Rev Neurother, 2016, 16(10): 1127-1129.
7
Okano H, Yamanaka S. iPS cell technologies: significance and applications to CNS regeneration and disease [J]. Mol Brain, 2014, 7(1): 22.
8
Tafida MA, Wagatsuma Y, Ma E, et al. Descriptive epidemiology of traumatic spinal injury in Japan [J]. J Orthop Sci, 2018, 23(2): 273-276.
9
Fehlings M G, Tetreault L, Nater A, et al. The Aging of the Global Population: The Changing Epidemiology of Disease and Spinal Disorders [J]. Neurosurgery, 2015, 77 Suppl 4: S1-S5.
10
Fehlings MG, Martin AR, Tetreault LA, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction [J]. Global Spine J, 2017, 7(3 suppl): 221S-230S.
11
陈锴,蔡梦溪,晏梓钧,等.小胶质细胞M1/M2极化状态在脊髓损伤中作用的研究进展[J].脊柱外科杂志, 2019, 17(3): 216-219.
12
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets [J]. Nat Rev Immunol, 2011, 11(11): 723-737.
13
Aceves M, Terminel MN, Okoreeh A, et al. Morphine increases macrophages at the lesion site following spinal cord injury: Protective effects of minocycline [J]. Brain Behav Immun, 2019, 79: 125-138.
14
Ahuja CS, Nori S, Tetreault L, et al. Traumatic spinal cord Injury-Repair and regeneration [J]. Neurosurgery, 2017, 80(3S): S9-S22.
15
Mizuguchi R, Kriks S, Cordes R, et al. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons [J]. Nat Neurosci, 2006, 9(6): 770-778.
16
Xie K, Qiao F, Sun Y, et al. Notch signaling activation is critical to the development of neuropathic pain [J]. BMC Anesthesiol, 2015, 15(1): 41.
17
Patel M, Anderson J, Lei S, et al. Nkx6.1 enhances neural stem cell activation and attenuates glial scar formation and neuroinflammation in the adult injured spinal cord[J].Experimental Neurology,2021, 345: 113826.
18
Givogri MI, De PM, Galbiati F, et al. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury [J]. Dev Neurosci, 2006, 28(1/2): 81-91.
19
Drabek T, Janata A, Wilson CD, et al. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats-ScienceDirect [J]. Resuscitation, 2014, 85(2): 284-291.
20
Moini ZT, Ostad SN, Labibi F, et al. Minocycline effects on IL-6 concentration in macrophage and microglial cells in a rat model of neuropathic pain [J]. Iran Biomed J, 2016, 20(5): 273-279.
21
Thompson CD, Zurko JC, Hanna BF, et al. The therapeutic role of interleukin-10 after spinal cord injury [J]. J Neurotrauma, 2013, 30(15): 1311-1324.
22
Afshari K, Momeni RN, Lashgari NA, et al. Antibiotics with therapeutic effects on spinal cord injury: a review [J]. Fundam Clin Pharmacol, 2021, 35(2): 277-304.
23
Nazemi Z, Nourbakhsh MS, Kiani S, et al. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury [J]. J Control Release, 2020, 321: 145-158.
24
Tang Y, Le W.Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases [J]. Molecular Neurobiology, 2016, 53 (2): 1181-1194.
25
Yang Y, Cheng S, Liang G, et al. Celastrol inhibits cancer metastasis by suppressing M2-like polarization of macrophages [J]. Biochemical and Biophysical Research Communications, 2018, 503(2): 414-419.
26
Hu Z, Shi X, Yu B, et al. Structural Insights into the pH-Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor [J]. Structure, 26(1): 60-71.
27
Yang C, Gao J, Wu B, et al. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat [J]. Biomed Pharmacother, 2017, 94: 380-385.
[1] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[2] 曹叙勇, 刘耀升. 脊柱转移瘤手术并发症研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(05): 435-439.
[3] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[4] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[5] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[6] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[7] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[8] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[9] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[10] 郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.
[11] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[12] 李俸鑫, 许建文, 陈如玉, 李常秋, 王继羚, 谭秀伟, 卜海峰, 王海霖, 苏义基. 2015至2020年广西医科大学第一附属医院老年脊髓损伤的特征分析[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(01): 45-50.
[13] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[14] 白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(01): 33-36.
[15] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
阅读次数
全文


摘要