切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 109 -113. doi: 10.3877/cma.j.issn.2096-0263.2019.02.009

所属专题: 文献

综述

EGFR信号通路在骨性关节炎研究中进展
曾文波1, 兰生辉1, 蔡贤华1, 刘曦明1,()   
  1. 1. 430070 武汉,中国人民解放军中部战区总医院骨科(湖北省骨创伤救治临床医学研究中心);510515 广州,南方医科大学
  • 收稿日期:2018-10-12 出版日期:2019-04-05
  • 通信作者: 刘曦明
  • 基金资助:
    国家自然科学基金资助项目(81601902); 湖北省自然科学基金(2015CFB240); 博士后科学基金(2015M572817); 湖北省自然科学基金专项(2017ACA099); 湖北省卫生和计划生育委员会联合基金项目(WJ2018H0064)

Progress of the role of EGFR signaling pathway in osteoarthritis

Wenbo Zeng1, Shenghui Lan1, Xianhua Cai1, Ximing Liu1,()   

  1. 1. Depatment of Othopedics, Central theater command General Hospital of the PLA (Clinical Medical Research Center for Bone Trauma Treatment in Hubei Province), Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
  • Received:2018-10-12 Published:2019-04-05
  • Corresponding author: Ximing Liu
引用本文:

曾文波, 兰生辉, 蔡贤华, 刘曦明. EGFR信号通路在骨性关节炎研究中进展[J]. 中华老年骨科与康复电子杂志, 2019, 05(02): 109-113.

Wenbo Zeng, Shenghui Lan, Xianhua Cai, Ximing Liu. Progress of the role of EGFR signaling pathway in osteoarthritis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2019, 05(02): 109-113.

软骨细胞在骨关节表面形成保护关节的软骨组织,关节软骨细胞的增殖、分化、凋亡及代谢的失衡将导致骨性关节炎(OA)的发生。近年研究发现,表皮生长因子受体(EGFR)信号通路是多功能细胞因子,与人体多种器官和组织的病理及生理过程紧密相关,在调节软骨细胞的生长及代谢过程中发挥重要作用。因此,本文围绕OA病变中EGFR信号通路在OA中的作用和机制进行综述,以期为OA和其他骨关节疾病的研究和治疗提供新的方法和思路。

Chondrocytes form articular cartilage on the surface of arthrosis. The proliferation, differentiation, apoptosis and metabolic imbalance of articular chondrocytes will lead to the occurrence of osteoarthritis (OA). Recent studies have shown that EGFR signaling pathway is a multifunctional cytokine, which is closely related to the pathological and physiological processes of various organs and tissues, and plays an important role in regulating the growth and metabolism of chondrocytes. Therefore, this review focuses on the role and mechanism of EGFR signaling pathway in OA, in order to provide new methods and ideas for the research and treatment of OA and other bone and joint diseases.

图1 EGFR及其信号传导通路:EGFR与其配体AREG、BTC、EGF、EPGN、EREG、HBEGF和TGFA结合形成二聚体,受体在细胞内的部分发生特定酪氨酸残基磷酸化,从而激活下游细胞内的MAPK Ras-Raf通路和PI3K-AKT信号传导通路等多种信号通路,调控细胞核内相应基因的表达。信号从细胞质传导到细胞核内,还直接或间接激活Wnt典型和非典型、TWEAK、RANKL-RANK、核因子κB及JAK-STAT等信号通路,各信号通路相互作用,彼此影响
1
Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 [J]. Lancet, 2012, 380(9859):2163-2196.
2
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study [J]. Ann Rheum Dis, 2014, 73(7):1323-1330.
3
Long DL, Ulici V, Chubinskaya S, et al. Heparin-binding epidermal growth factor-1ike growth factor(HB-EGF)is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities [J]. Osteoarthritis Cartilage, 2015, 23(9):1523-1531.
4
Jia H, Ma X, Tong W, et al. EGFR signaling is critical for maintaining the superficial layer of articularcartilage and preventing osteoarthritis initiation [J]. Proc Natl Acad Sci U S A, 2016, 113(50):14360-14365.
5
Mobasheri A, Bondy CA, Moley, et al. Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines[J]. Adv Anat Embryol Cell Biol,2008,200:1p following vi, 1-84.
6
Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis[J].Instr Course Lect, 2005, 54:465-480.
7
Felson DT, Neogi T.Osteoarthritis: is it a disease of cartilage or of bone?[J]. Arthritis Rheum, 2004, 50(2):341-344.
8
Schneider MR, Sibilia M, Erben RG. The EGFR network in bone biology and pathology [J]. Trends EndocrinolMetab, 2009, 20(10):517-524.
9
Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance [J]. J Cell Physiol, 2009, 218(3):460-466.
10
AppletonCT, UsmaniSE, MortJS, et al. Rho/ROCK and MEK/ERK activation by transforminggrowth factor-a induces articular cartilage degradation[J]. Lab Invest, 2010,90(1):20-30.
11
袁功武,兰生辉,刘曦明.表皮生长因子受体信号通路对骨折愈合的生物学作用[J].中国矫形外科杂志, 2018, 26(4):328-332.
12
袁功武,兰生辉,曾文波,等.吉非替尼对骨折愈合中I,II及X型胶原基因表达的影响[J].中国矫形外科杂志, 2018, 26(10):939-944.
13
Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy [J]. Nat Rev Cancer, 2004, 4(5):361-370.
14
Zhang X, Zhu J, Liu F, et al. Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model [J]. Bone Res, 2014,5(2):14015.
15
Pest MA, Russell BA, Zhang YW, et al. Disturbed cartilage and joint homeostasis resulting from a loss of Mitogen-Inducible gene 6 in a mouse model of joint dysfunction [J]. Arthritis Rheumatol, 2014, 66(10):2816-2827.
16
Shepard JB, Jeong JW, Maihle NJ, et al. Transient anabolic effects accompany epidermal growth factor receptor signal activation in articular cartilage in vivo [J]. Arthritis Res Ther, 2013, 15(3):R60.
17
Staal B, Williams BO, Beier F, et al. Cartilage-specific deletion of Mig-6 results in osteoarthritis-like disorder with excessive articular chondrocyte proliferation [J]. Proc Natl Acad Sci U S A, 2014, 111(7):2590-2595.
18
Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation [J]. Pharmacol Res, 2012, 66(2):105-143.
19
He P, Shen N, Gao G, et al. Periodic mechanical stress activates PKC delta-Dependent EGFR mitogenic signals in rat chondrocytes via PI3K-Akt and ERK1/2 [J]. Cell Physiol Biochem, 2016, 39(4):1281-1294.
20
Naik B, Kumar M, Khanna AK, et al. Clinico-histopathological study of varicose vein and role of matrix metalloproteinases-1,matrix metalloproteinases-9 and tissue inhibitor of matrix metalloproteinase-1 in varicose vein formation [J]. Indian J Pathol Microbiol, 2016, 59(1):25-30.
21
Konstantinos C Tsolis, Ekaterini S Bei, Ioanna Papathanasiou,et al. Comparative proteomic analysis of hypertrophicchondrocytes in osteoarthritis[J].Clin Proteomics,2015,12(1):12.
22
Gehris AL, Stringa E, Spina J, et al. The region encoded by the alternatively splicedexon IIIA in mesenchymal fibronectin appears essential forchondrogenesis at the level of cellular condensation[J]. Dev Biol, 1997,190(2):191-205.
23
Takeda H, Inoue H, Kutsuna T,et al. Activation of epidermal growth factor receptor gene is involvedin transforming growth factor-?mediated fibronectinexpression in a chondrocyte progenitor cell line[J]. Int J Mol Med,2010,25(4):593-600.
24
刘艳,尹若峰,侯睿智. BMP-2诱导软骨细胞凋亡及增殖的研究[J].中华骨与关节外科杂志, 2016, 9(03):251-254.
25
Goggs R, Carter SD, Schulze-Tanzil G, et al. Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis [J]. Vet J, 2003, 166(2):140-158.
26
So T, Croft M. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules [J]. Front Immunol, 2013, 4:139.
27
ShengZG, HuangW, LiuYX, et al.Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway inmicroencapsulated chondrocytes[J]. Toxicol Appl Pharmacol, 2013,267(1):74-87.
28
Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis[J].Ann N Y Acad Sci, 2010. 1192:230-237.
29
Piel MJ, Kroin JS, Im HJ. Assessment of knee joint pain in experimental rodentmodels of osteoarthritis[J]. Methods Mol Biol, 2015,1226:175-181.
30
Henry SP, Jang CW, Deng JM, et al. Generation of aggrecan-CreERT2 knockin mice for inducibleCre activity in adult cartilage [J]. Genesis, 2009, 47(12):805-814.
31
Zhang X, Zhu J, Liu F, et al. Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model [J]. Bone Res, 2014,5(2):14015.]
[Henry SP, Jang CW, Deng JM, et al. Generation of aggrecan-CreERT2 knockin mice for inducibleCre activity in adult cartilage [J]. Genesis, 2009, 47(12):805-814.
32
Bonnevie ED, Galesso D, Secchieri C, et al. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid [J]. PLoS One, 2015, 10(11):e0143415.
33
Das S, Banquy X, Zappone B, et al. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication [J]. Biomacromolecules, 2013, 14(5):1669-1677.
34
Lim H, Kim HP. Matrix metalloproteinase-13 expression in IL-1β-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways [J]. Arch Pharm Res, 2011, 34(1):109-117.
35
Long DL, Loeser RF. p38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation [J]. Osteoarthritis Cartilage, 2010, 18(9):1203-1210.
[1] 郭丽丽, 侯牛牛, 肖晶晶, 王哲, 王亚萍, 易军, 凌瑞. T1~3N0M0期激素受体阳性、人表皮生长因子受体2阴性浸润性乳腺癌复发、转移风险因素分析[J]. 中华乳腺病杂志(电子版), 2022, 16(03): 138-146.
[2] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[3] 傅子财, 黄勇, 陈斐, 刘澍雨, 朱伟民. 间充质干细胞来源外泌体在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(02): 196-201.
[4] 郭道瑞, 曲春霞, 战怀杰. 自体软骨细胞联合Ⅰ型胶原治疗剥脱性膝骨软骨炎[J]. 中华关节外科杂志(电子版), 2020, 14(06): 773-775.
[5] 黄勇, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 三磷酸鸟苷酶相关蛋白激酶在骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(06): 717-721.
[6] 李晓飞, 孙一, 张钊, 张海宁. 机械激活离子通道压力蛋白与细胞骨架的相关性研究[J]. 中华关节外科杂志(电子版), 2020, 14(06): 691-697.
[7] 邢超, 徐灵巧, 廖文婷, 孙养鹏, 叶钟泰, 张志光. 骨髓间充质干细胞来源的外泌体促进髁突软骨细胞再生的研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 207-214.
[8] 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2阳性乳腺癌的靶向治疗研究进展[J]. 中华普通外科学文献(电子版), 2021, 15(06): 453-458.
[9] 吕林洁, 王长生, 王晓冰, 李忠, 钱其军. 间充质干细胞治疗膝骨性关节炎的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 365-371.
[10] 王月鹏, 徐云峰. 生长分化因子5 rs143383基因多态性与膝关节骨关节炎相关性的Meta分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 51-58.
[11] 朱燕宾, 赵阔, 张奇, 陈伟, 连晓东, 王忠正, 王宇钏, 张英泽. 推进骨瓣技术在胫骨高位截骨术治疗膝关节骨性关节炎中的初步研究[J]. 中华老年骨科与康复电子杂志, 2021, 07(03): 129-131.
[12] 齐岩松, 吴海贺, 徐永胜, 王一帆. 外翻膝患者全膝关节置换术中股骨远端外翻截骨应用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(07): 552-555.
[13] 张林, 翟沛. 双氯芬酸钠联合骨肽注射液对老年膝关节骨性关节炎的治疗效果及安全性评估[J]. 中华临床医师杂志(电子版), 2021, 15(05): 335-340.
[14] 程元甲, 徐玲, 叶京明, 张虹, 张爽, 刘荫华, 李宗翰. 帕妥珠单抗与曲妥珠单抗联合化疗在早期乳腺癌新辅助治疗中的疗效评价[J]. 中华临床医师杂志(电子版), 2020, 14(05): 344-348.
[15] 徐高丽, 张建兴, 周健, 沈文俊, 谷志远, 徐国超. 静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用[J]. 中华老年病研究电子杂志, 2021, 08(03): 24-29.
阅读次数
全文


摘要