切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 114 -117. doi: 10.3877/cma.j.issn.2096-0263.2019.02.010

所属专题: 文献

综述

间充质干细胞及其来源的外泌体在骨关节炎治疗中的研究进展
吴鸿斌1, 杨华2, 汪健2, 孙红2,()   
  1. 1. 550004 贵阳,贵州医科大学附属医院骨科;550004 贵阳,贵州医科大学
    2. 550004 贵阳,贵州医科大学附属医院骨科
  • 收稿日期:2018-05-18 出版日期:2019-04-05
  • 通信作者: 孙红
  • 基金资助:
    贵州省科技计划项目(黔科合LH字[2016]7253号)

Research progress of mesenchymal stem cells and their exosomes in the treatment of osteoarthritis

Hongbin Wu1, Hua Yang2, Jian Wang2, Hong Sun2,()   

  1. 1. Department of Orthopedics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Guizhou Medical University, Guiyang 550004, China
  • Received:2018-05-18 Published:2019-04-05
  • Corresponding author: Hong Sun
引用本文:

吴鸿斌, 杨华, 汪健, 孙红. 间充质干细胞及其来源的外泌体在骨关节炎治疗中的研究进展[J]. 中华老年骨科与康复电子杂志, 2019, 05(02): 114-117.

Hongbin Wu, Hua Yang, Jian Wang, Hong Sun. Research progress of mesenchymal stem cells and their exosomes in the treatment of osteoarthritis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2019, 05(02): 114-117.

骨关节炎(OA)是最常见的慢性退行性骨关节疾病,由于软骨的自愈能力有限,目前的治疗策略对OA无法达到治愈效果。近年来,越来越多的证据表明间充质干细胞治疗OA可获得较好的疗效。深入研究表明,间充质干细胞的旁分泌机制可在机体异常条件下发挥抗炎、免疫调节作用,而外泌体可能在此机制中扮演着重要的角色。外泌体可通过调控细胞间信号转导、损伤组织修复及免疫调节等过程,从而延缓OA进程。间充质干细胞及其来源的外泌体为治疗OA提供了新的治疗策略,但仍需更大量及大型动物研究以更好的验证间充质干细胞及其来源的外泌体用于治疗OA的生物安全性和治疗特征。本文就间充质干细胞及其来源的外泌体在OA中的作用及机制作一综述。

Osteoarthritis is the most common chronic degenerative bone and joint disease. Due to the limited self-healing ability of cartilage, the current treatment strategy cannot achieve a curative effect on osteoarthritis. Recently, accumulated evidences have shown that mesenchymal stem cells play critical roles in the OA treatment. Furthermore, it is known that the paracrine effects of mesenchymal stem cells have the role of anti-inflammation and immunomodulation under abnormal conditions, in which exosomes may play an important role. Exosomes are able to retard the progression of OA by regulating intercellular signal transduction, tissue damage repair, and immune regulation. Mesenchymal stem cells and their derived exosomes provide new therapeutic strategies for the treatment of OA. However, more and more large animal studies are needed to better determine the biological safety and therapeutic characteristics of mesenchymal stem cells and their derived exosomes for the treatment of osteoarthritis. This article focused on the role and mechanism of mesenchymal stem cells and their derived exosomes in osteoarthritis.

1
Martel-Pelletier J. Pathophysiology of osteoarthritis [J]. Osteoarthritis Cartilage, 2004, 12(Suppl A):S31-S33.
2
Loeser RF. Aging processes and the development of osteoarthritis [J]. Curr Opin Rheumatol, 2013, 25(1):108-113.
3
Zhang YQ, Xu L, Nevitt MC, et al. Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States - The Beijing osteoarthritis study [J]. Arthritis Rheum, 2001, 44(9):2065-2071.
4
Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity [J]. Int J Obes Relat Metab Disord, 2001, 25(5):622-627.
5
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors [J]. Ann Intern Med, 2000, 133(8):635-646.
6
Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain [J]. Gene, 2013, 527(2):440-447.
7
De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis [J]. Curr Opin Pharmacol, 2018, 40:74-80.
8
Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment [J]. Semin Cell Dev Biol, 2017, 67:56-64.
9
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair [J]. Nat Rev Rheumatol, 2013, 9(10):584-594.
10
Fellows CR, Matta C, Zakany R, et al. Adipose, bone marrow and synovial Joint-Derived mesenchymal stem cells for cartilage repair [J]. Front Genet, 2016, 7:213.
11
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, et al. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system [J]. Ocul Surf, 2016, 14(2):121-134.
12
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy [J]. World J Stem Cells, 2014, 6(5):526-539.
13
Freitag J, Bates D, Boyd R, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review [J]. BMC Musculoskelet Disord, 2016, 17(1):230.
14
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function [J]. Stem Cell Res Ther, 2016, 7(1):125.
15
Zhu Y, Wang YC, Zhao BZ, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis [J]. Stem Cell Res Ther, 2017, 8(1):64.
16
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) [J]. J Biol Chem, 1987, 262(19):9412-9420.
17
Hao Z C, Lu J, Wang S Z, et al. Stem cell-derived exosomes: A promising strategy for fracture healing [J]. Cell Prolif, 2017, 50(5).
18
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy [J]. Annu Rev Physiol, 2015, 77:13-27.
19
Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem Cell-Derived exosomes promote fracture healing in a mouse model [J]. Stem Cells Transl Med, 2016, 5(12):1620-1630.
20
Kang T, Jones TM, Naddell C, et al. Adipose-Derived stem cells induce angiogenesis via microvesicle transport of miRNA-31 [J]. Stem Cells Transl Med, 2016, 5(4):440-450.
21
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [J]. Sci Rep, 2016, 6:32993.
22
Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons [J]. Mol Neurobiol, 2017, 54(4):2659-2673.
23
Huang JH, Yin XM, Xu Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats [J]. J Neurotrauma, 2017, 34(24):3388-3396.
24
Nong KT, Wang WW, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats [J]. Cytotherapy, 2016, 18(12):1548-1559.
25
Yan YM, Jiang WQ, Tan YW, et al. hucMSC Exosome-Derived GPX1 is required for the recovery of hepatic oxidant injury [J]. Mol Ther, 2017, 25(2):465-479.
26
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury [J]. Stem Cell Res, 2010, 4(3):214-222.
27
Zhang S, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity [J]. Biomaterials, 2018, 156:16-27.
28
Cosenza S, Ruiz M, Toupet K, et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis [J]. Sci Rep, 2017, 7(1):16214.
29
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy, 2006, 8(4):315-317.
30
Park MS, Kim YH, Jung Y, et al. In situ recruitment of human bone Marrow-Derived mesenchymal stem cells using chemokines for articular cartilage regeneration [J]. Cell Transplant, 2015, 24(6):1067-1083.
31
Emadedin M, Aghdami N, Taghiyar L, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis [J]. Arch Iran Med, 2012, 15(7):422-428.
32
Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration [J]. Osteoarthritis Cartilage, 2016, 24(12):2135-2140.
33
Cui DX, Li HY, Xu X, et al. Mesenchymal stem cells for cartilage regeneration of TMJ osteoarthritis [J]. Stem Cells Int, 2017:5979741.
34
Gu XJ, Li CX, Yin F, et al. Adipose-derived stem cells in articular cartilage regeneration: current concepts and optimization strategies [J]. Histol Histopathol, 2018, 33(7):639-653.
35
Lu ZH, Lei DQ, Jiang TM, et al. Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells [J]. Cell Death Dis, 2017, 8(5):e2801.
36
Gomez-Leduc T, Hervieu M, Legendre FA, et al. Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering [J]. Sci Rep, 2016, 6:32786.
37
Yao H, Xue J, Wang QF, et al. Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells [J]. Mater Sci Eng C Mater Biol Appl, 2017, 79:661-670.
38
Mahboudi H, Kazemi B, Soleimani MA, et al. Enhanced chondrogenesis of human bone marrow mesenchymal Stem Cell (BMSC) on nanofiber-based polyethersulfone (PES) scaffold [J]. Gene, 2018, 643:98-106.
39
Jiang XR, Huang BT, Yang HY, et al. TGF-beta 1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway [J]. Cell Physiol Biochem, 2017, 42(6):2230-2241.
40
Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis [J]. Nat Rev Rheumatol, 2015, 11(1):35-44.
41
Pers YM, Ruiz M, Noel D, et al. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives [J]. Osteoarthritis Cartilage, 2015, 23(11):2027-2035.
42
English K. Mechanisms of mesenchymal stromal cell immunomodulation [J]. Immunol Cell Biol, 2013, 91(1):19-26.
43
Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal stem Cell-Derived extracellular vesicles as mediators of Anti-Inflammatory effects: endorsement of macrophage polarization [J]. Stem Cells Transl Med, 2017, 6(3):1018-1028.
44
Cho DI, Kim MR, Jeong HY, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages [J]. Exp Mol Med, 2014, 46 e70.
45
Vasandan AB, Jahnavi S, Shashank CA, et al. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE(2)-dependent mechanism [J]. Sci Rep, 2016, 6:38308.
46
Abomaray FM, Al Jumah MA, Kalionis B, et al. Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an Anti-Inflammatory phenotype in CD1+dendritic cells [J]. Stem Cell Rev, 2015, 11(3):423-441.
47
Lo Monaco M, Merckx G, Ratajczak J, et al. Stem cells for cartilage repair: preclinical studies and insights in translational animal models and outcome measures [J]. Stem Cells Int, 2018:9079538.
48
Toh WS, Foldager CB, Pei M, et al. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration [J]. Stem Cell Rev, 2014, 10(5):686-696.
49
Liu YB, Lin LP, Zou R, et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis [J]. Cell Cycle, 2018, 17(21/22):2411-2422.
50
Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model [J]. Theranostics, 2017, 7(1):180-195.
51
Blazquez R, Sanchez-Margallo Francisco M, De La Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells [J]. Front Immunol, 2014, 5:556.
52
Tofino-Vian M, Guillen MI, Perez DM, et al. Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes [J]. Cell Physiol Biochem, 2018, 47(1):11-25.
53
Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cells secrete immunologically active exosomes [J]. Stem Cells Dev, 2014, 23(11):1233-1244.
54
Tofino-Vian M, Isabel Guillen M, Jose Alcaraz M. Extracellular vesicles: A new therapeutic strategy for joint conditions [J]. Biochem Pharmacol, 2018, 153(SI):134-146.
55
Meng F, Zhang Z, Chen W, et al. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1 beta-induced chondrocyte responses [J]. Osteoarthritis and Cartilage, 2016, 24(5):932-941.
56
Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes [J]. Arthritis Res Ther, 2013, 15(1):R28.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要