切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 271 -279. doi: 10.3877/cma.j.issn.2096-0263.2025.05.002

关节炎

中老年女性血清总睾酮水平与骨关节炎发生风险的横断面研究
廖江涛1, 宋振宇2, 徐浩1, 李翼1, 徐冬冬1, 于威1, 代志鹏3, 田洪涛1, 童伟1,()   
  1. 1430022 武汉,华中科技大学同济医学院附属协和医院骨科
    2541000 桂林医学院附属第二医院
    3450003 郑州,河南省人民医院
  • 收稿日期:2025-06-25 出版日期:2025-10-05
  • 通信作者: 童伟
  • 基金资助:
    湖北省科学技术厅项目(2023BCB089); 国家自然科学基金项目(82372465); 国家自然科学基金项目(82202762)

Cross-sectional study on serum total testosterone levels and the risk of osteoarthritis in Middle-aged and Elderly Women

Jiangtao Liao1, Zhenyu Song2, Hao Xu1, Yi Li1, Dongdong Xu1, Wei Yu1, Zhipeng Dai3, Hongtao Tian1, Wei Tong1,()   

  1. 1Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
    2The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China
    3Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
  • Received:2025-06-25 Published:2025-10-05
  • Corresponding author: Wei Tong
引用本文:

廖江涛, 宋振宇, 徐浩, 李翼, 徐冬冬, 于威, 代志鹏, 田洪涛, 童伟. 中老年女性血清总睾酮水平与骨关节炎发生风险的横断面研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 271-279.

Jiangtao Liao, Zhenyu Song, Hao Xu, Yi Li, Dongdong Xu, Wei Yu, Zhipeng Dai, Hongtao Tian, Wei Tong. Cross-sectional study on serum total testosterone levels and the risk of osteoarthritis in Middle-aged and Elderly Women[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(05): 271-279.

目的

关于血清总睾酮(TST)水平与骨关节炎(OA)间的关系尚不清楚,本研究旨在调查血清总睾酮水平与中老年女性OA发生风险间的关联。

方法

采用横断面研究设计,纳入美国国家健康与营养调查(NHANES)2013-2016周期中1 627名50岁及以上女性数据。暴露变量为血清总睾酮水平,结局变量为OA。

结果

多变量逻辑回归分析显示,血清总睾酮水平较高与50岁及以上女性OA发生风险显著降低相关。具体而言,血清总睾酮水平每升高20个单位,OA发生风险降低27.2%(OR=0.728;95% CI:0.566,0.936;P=0.0169)。平滑曲线拟合二者间的关联呈线性关系。交互作用检验表明,年龄、BMI、高血压、糖尿病、腰围、血清总胆固醇水平、雌二醇水平及性激素结合球蛋白水平水平均未显著改变睾酮与OA间的关联性。

结论

在美国50岁及以上的女性中,较高的血清睾酮水平与较低的OA发生风险相关,本研究为血清总睾酮水平与OA间的关系提供了新的见解和证据。

Objective

The relationship between serum total testosterone levels and osteoarthritis (OA) remains controversial. This study aimed to investigate the association between serum total testosterone levels and the risk of OA in middle-aged and older women.

Methods

A cross-sectional study design was employed, including data from 1,627 women aged 50 and older from the 2013-2016 cycles of the National Health and Nutrition Examination Survey (NHANES) in the United States. The exposure variable was serum total testosterone levels, and the outcome variable was OA.

Results

The multivariable logistic regression analysis revealed a significant association between higher serum testosterone levels and a reduced risk of OA in women over 50 in the United States. Specifically, for every 20-unit increase in serum testosterone levels, the risk of OA decreased by 27.2% [OR=0.728; 95% CI: 0.566, 0.936; P=0.0169]. The smooth curve fitting demonstrated a linear relationship between the two variables. Interaction tests showed that factors such as age, BMI, hypertension, diabetes, waist circumference, serum total cholesterol levels, estradiol levels, and SHBG levels did not significantly influence the relationship between serum testosterone levels and OA.

Conclusions

In women aged 50 and older in the United States, higher serum testosterone levels are associated with a lower risk of OA. This study provides new insights and evidence into the relationship between serum testosterone levels and OA.

图1 纳排流程图
表1 1 627名50岁及以上女性研究人群基线特征
变量 总参与者人数(n=1 627) 非骨关节炎人数(n=1 159) 骨关节炎人数(n=468) 统计值 P
年龄[岁,Mean(95% CI)] 63.47(62.90,64.05) 62.37(61.76,62.98) 65.47(64.45,66.48) F=33.455 <0.001
血清总睾酮[ng/dL,Mean(95% CI)] 19.75(18.82,20.68) 20.55(19.29,21.82) 18.30(17.11,19.48) F=7.017 0.013
BMI[kg/m2,Mean(95% CI)] 29.80(29.19,30.40) 29.12(28.51,29.72) 31.03(30.24,31.81) F=32.730 <0.001
腰围[cm,Mean(95% CI)] 100.50(99.46,101.55) 99.12(97.97,100.28) 103.00(101.66,104.35) F=31.764 <0.001
PIR[Mean(95% CI)] 3.07(2.90,3.25) 2.97(2.77,3.18) 3.26(3.01,3.50) F=4.101 0.052
雌二醇[pg/ml,Mean(95% CI)] 17.44(13.32,21.56) 19.68(13.99,25.38) 13.37(9.97,16.78) F=4.252 0.048
胆固醇[mg/dL,Mean(95% CI)] 207.92(205.15,210.70) 207.91(204.76,211.06) 207.95(202.34,213.56) F<0.001 0.991
性激素结合球蛋白[nmol/L,Mean(95% CI)] 72.30(69.96,74.63) 71.59(68.61,74.58) 73.57(69.65,77.50) F=0.604 0.443
种族[例(%)]       χ2=84.153 <0.001
墨西哥裔美国人 243(14.94) 193(16.65) 50(10.68)    
其他西班牙语裔 208(12.78) 169(14.58) 39(8.33)    
非西班牙语裔白人 714(43.88) 429(37.01) 285(60.90)    
非西班牙语裔黑人 289(17.76) 218(18.81) 71(15.17)    
其他种族 173(10.63) 150(12.94) 23(4.91)    
高血压病史[例(%)]       χ2=15.490 <0.001
912(56.05) 61(52.98) 298(63.68)    
715(43.95) 545(47.02) 170(36.32)    
糖尿病病史[例(%)]       χ2=3.412 0.065
335(20.59) 225(19.41) 110(23.50)    
1292(79.41) 934(80.59) 358(76.50)    
教育程度[例(%)]       χ2=29.445 <0.001
高中以下学历 395(24.28) 319(27.52) 76(16.24)    
高中学历 349(21.45) 256(22.09) 93(19.87)    
高中及以上学历 883(54.27) 584(50.39) 299(63.89)    
婚姻状况[例(%)]       χ2=3.618 0.164
已婚或同居 854(52.49) 614(52.98) 240(51.28)    
分居、离异或丧偶 650(39.95) 450(38.83) 200(42.74)    
从未结婚 123(7.56) 95(8.20) 28(5.98)    
吸烟史[例(%)]       χ2=9.164 0.002
616(37.86) 412(35.55) 204(43.59)    
1011(62.14) 747(64.45) 264(56.41)    
饮酒史[例(%)]       χ2=19.477 <0.001
879(54.03) 586(50.56) 293(62.61)    
748(45.97) 573(49.44) 175(37.39)    
表2 单因素回归分析
表3 血清总睾酮水平与OA间的关系
图2 TST与OA的关联性分析。研究发现睾酮与OA存在线性关联(P<0.05)。图中实线与虚线分别代表估计值及其95% CI。校正因素包括:年龄、种族、BMI、高血压、糖尿病、教育程度、婚姻状况、吸烟史、饮酒史、腰围、PIR、胆固醇、雌二醇及性激素结合球蛋白水平注:OA表示骨关节炎;TST表示睾酮
图3 血清总睾酮水平每增加20单位与OA关联性的亚组分析
1
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis [J]. Lancet, 2019, 393(10182): 1745-1759.
2
Zhang Y, Jordan JM J CIGM. Epidemiology of osteoarthritis [J]. 2010, 26(3): 355-69.
3
Runhaar J, de Vos BC, van Middelkoop M, et al. Prevention of incident knee osteoarthritis by moderate weight loss in overweight and obese females [J]. Arthritis Care Res (Hoboken), 2016, 68(10): 1428-1433.
4
Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development [J]. Nat Rev Rheumatol, 2012, 8(2): 77-89.
5
Srikanth VK, Fryer JL, Zhai GJ, et al. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis [J]. Osteoarthritis Cartilage, 2005, 13(9): 769-781.
6
Felson DT, Niu JB, Clancy M, et al. Low levels of vitamin D and worsening of knee osteoarthritis: results of two longitudinal studies [J]. Arthritis Rheum, 2007, 56(1): 129-136.
7
Lane NE, Gore LR, Cummings SR, et al. Serum vitamin D levels and incident changes of radiographic hip osteoarthritis: A longitudinal study [J]. Arthritis & Rheumatism, 1999, 42(5): 854-860.
8
Brouwer GM, van Tol AW, Bergink AP, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee [J]. Arthritis Rheum, 2007, 56(4): 1204-1211.
9
Johnson VL, Giuffre BM, Hunter DJ. Osteoarthritis: what does imaging tell us about its etiology? [J]. Semin Musculoskelet Radiol, 2012, 16(5): 410-418.
10
Martel-Pelletier J. Pathophysiology of osteoarthritis [J]. Osteoarthritis Cartilage, 2004, 12, Supplement: 31-33.
11
Lawrence JS, Bremner JM, Bier F. Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x-ray changes [J]. Ann Rheum Dis, 1966, 25(1): 1-24.
12
Tsai CL, Liu TK. Osteoarthritis in women: its relationship to estrogen and current trends [J]. Life Sci, 1992, 50(23): 1737-1744.
13
Sowers MR, McConnell D, Jannausch M, et al. Estradiol and its metabolites and their association with knee osteoarthritis [J]. Arthritis Rheum, 2006, 54(8): 2481-2487.
14
Nevitt MC, Cummings SR, Lane NE, et al. Association of estrogen replacement therapy with the risk of osteoarthritis of the hip in elderly white women [J]. Arch Intern Med, 1996, 156(18): 2073-80.
15
Nieschlag E, Nieschlag S. ENDOCRINE HISTORY: the history of discovery, synthesis and development of testosterone for clinical use [J]. Eur J Endocrinol, 2019, 180(6): R201-R212.
16
Kenny AM, Kleppinger A, Annis K, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty [J]. J Am Geriatr Soc, 2010, 58(6): 1134-1143.
17
Vanderschueren D, Vandenput L. Androgens and osteoporosis [J]. Andrologia, 2000, 32(3): 125-130.
18
Huang K, Wu LD, Bao JP. Dehydroepiandrosterone and experimental osteoarthritis [J]. Vitam Horm, 2018, 108: 367-384.
19
Alves JC, Santos A, Jorge P, et al. Effect of a single intra-articular administration of stanozolol in a naturally occurring canine osteoarthritis model: a randomised trial [J]. Sci Rep, 2022, 12(1): 5887.
20
Chen S, Sun XH, Zhou GW, et al. Association between sensitivity to thyroid hormone indices and the risk of osteoarthritis: an NHANES study [J]. Eur J Med Res, 2022, 27(1): 114.
21
Lee G, Yang JY, Kim SJ, et al. Enhancement of intracellular cholesterol efflux in chondrocytes leading to alleviation of osteoarthritis progression [J]. Arthritis Rheumatol, 2025, 77(2): 151-162.
22
Cheng LL, Wang SY. Lower serum testosterone is associated with increased likelihood of arthritis [J]. Sci Rep, 2023, 13(1): 19241.
23
Miller GD, Nicklas BJ, Davis CC, et al. Basal growth hormone concentration increased following a weight loss focused dietary intervention in older overweight and obese women [J]. J Nutr Health Aging, 2012, 16(2): 169-174.
24
Jin X, Wang BH, Wang X, et al. Associations between endogenous sex hormones and MRI structural changes in patients with symptomatic knee osteoarthritis [J]. Osteoarthritis Cartilage, 2017, 25(7): 1100-1106.
25
Freystaetter Gregor, Fischer Karina, Orav Endel J, et al. Total Serum Testosterone and Western Ontario and McMaster Universities Osteoarthritis Index Pain and Function Among Older Men and Women With Severe Knee Osteoarthritis [J]. Arthritis Care Res (Hoboken), 2020, 72(11): 1511-1518.
26
Sowers MF, Hochberg M, Crabbe JP, et al. Association of bone mineral density and sex hormone levels with osteoarthritis of the hand and knee in premenopausal women [J]. Am J Epidemiol, 1996, 143(1): 38-47.
27
Yan YS, Qu ZH, Yu DQ, et al. Sex steroids and osteoarthritis: a mendelian randomization study [J]. Front Endocrinol (Lausanne), 2021, 12: 683226.
28
Farahat MN, Yanni G, Poston R, et al. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis [J]. Ann Rheum Dis, 1993, 52(12): 870-875.
29
Özler K, Aktaş E, Atay Ç, et al. Serum and knee synovial fluid matrixmetalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late stage osteoarthritis [J]. Acta Orthop Traumatol Turc, 2016, 50(6): 670-673.
30
Xie CX, Chen Q. Adipokines: new therapeutic target for osteoarthritis? [J]. Curr Rheumatol Rep, 2019, 21(12): 71.
31
Chen CW, Jian CY, Lin PH, et al. Role of testosterone in regulating induction of TNF-α in rat spleen via ERK signaling pathway [J]. Steroids, 2016, 111: 148-154.
32
Kapoor D, Clarke S, Stanworth R, et al. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes [J]. Eur J Endocrinol, 2007, 156(5): 595-602.
33
Koelling S, Miosge N. Sex differences of chondrogenic progenitor cells in late stages of osteoarthritis [J]. Arthritis Rheum, 2010, 62(4): 1077-1087.
34
Koelling S, Kruegel J, Irmer M, et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis [J]. Cell Stem Cell, 2009, 4(4): 324-335.
35
Janssen JN, Batschkus S, Schimmel S, et al. The influence of TGF-β3, EGF, and BGN on SOX9 and RUNX2 expression in human chondrogenic progenitor cells [J]. J Histochem Cytochem, 2019, 67(2): 117-127.
36
Englert C, Blunk T, Fierlbeck J, et al. Steroid hormones strongly support bovine articular cartilage integration in the absence of interleukin-1β [J]. Arthritis & Rheumatism, 2006, 54(12): 3890-3897.
37
Zouhal H, Jayavel A, Parasuraman K, et al. Effects of exercise training on anabolic and catabolic hormones with advanced age: a systematic review [J]. Sports Med, 2022, 52(6): 1353-1368.
38
De Maddalena C, Vodo S, Petroni A, et al. Impact of testosterone on body fat composition [J]. J Cell Physiol, 2012, 227(12): 3744-3748.
[1] 陈波波, 王冠乔, 王宏煜, 侯建业, 田野. 骨代谢指标与关节软骨损伤Outerbridge分级的相关性研究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 418-426.
[2] 陈雅杰, 康鹏德. 滑膜细胞衰老在骨关节炎病理机制及靶向治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 445-455.
[3] 黄鹏飞, 赵俊杰, 张兆坤, 王玺玉, 赵宇昊, 赵海燕. 硫酸软骨素及其衍生生物材料在骨关节炎治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 456-463.
[4] 姚放鸣, 谷邦宁, 杨旭辉, 曾子俊, 吴佳威, 何敏聪, 何晓铭, 魏秋实, 何伟, 刘文刚. 下肢肌肉分布与内翻型膝骨关节炎进展及肌少症的相关性[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 292-301.
[5] 周莹佳, 李嘉欢, 黎浩霖, 乔永杰. 初级纤毛及刺猬蛋白信号通路在骨关节炎中的作用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 330-335.
[6] 钟永洌, 张杰, 张志奇. 外翻膝术后中立位机械对线的早中期疗效[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 366-373.
[7] 王春久, 田向东, 谭冶彤, 薛志鹏, 张伟, 刘昂. 单平面胫骨高位截骨联合关节镜治疗内翻型膝骨关节炎[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 185-192.
[8] 王浩浩, 席刚, 杨家驹, 翁铭捷, 张民. 术前膝关节冠状面力线对牛津单髁术后力线的影响分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 156-161.
[9] 陈博, 李向毅. 骨关节炎中软骨细胞铜死亡的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 207-213.
[10] 王玺玉, 赵俊杰, 黄鹏飞, 张兆坤, 赵宇昊, 赵海燕. 基质金属蛋白酶响应性水凝胶在骨关节炎的应用[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 76-81.
[11] 贺方正, 吴涛, 廖长胜, 李锡勇, 牛萌煊, 韩鹏飞. 创伤后骨关节炎模型大鼠血浆中microRNA特征组学研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 257-270.
[12] 肖文韬, 谢培森, 康清源, 张克石, 关振鹏. 对家族聚集性膝骨关节炎家系的基因测序及在普通人群中的初步验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 337-345.
[13] 谢培森, 张绍龙, 张克石, 关振鹏. Circ_0136474增强软骨细胞自噬抑制骨关节炎软骨缺损[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 374-381.
[14] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
[15] 代培森, 郭东升, 张超, 刘爱峰, 薛宏飞, 王培检, 李文达, 高揆量. 针药并用治疗膝骨关节炎的研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(03): 104-106.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?