1 |
Lieberthal J, Sambamurthy N, scanzello CR. Inflammation in joint injury and Post-Traumatic osteoarthritis [J]. Osteoarthritis Cartilage, 2015, 23(11): 1825-1834.
|
2 |
Rai MF, Duan X, Quirk JD, et al. Post-Traumatic osteoarthritis in mice following mechanical injury to the synovial joint [J]. Sci Rep, 2017, 27(7): 45223.
|
3 |
Wang LJ, Zeng N, Yan ZP. Post-traumatic osteoarthritis following ACL injury [J]. Arthritis Res Ther, 2020, 22(1): 57.
|
4 |
Berenbaum F, Wallace IJ, Lieberman DE, et al. Modern-day environmental factors in the pathogenesis of osteoarthritis [J]. Nat Rev Rheumatol, 2018, 14(11): 674-681.
|
5 |
Swingler TE, Niu LZ, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis [J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
|
6 |
Zhu JJ, Yang SH, Qi YD, et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model [J]. Sci Adv, 2022, 8(13): eabk0011.
|
7 |
Wu YA, Lu AA, Shen B, et al. The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis [J]. Curr Gene Ther, 2019, 19(4): 255-263.
|
8 |
Liang YJ, Xu X, Li XF, et al. Chondrocyte-Targeted MicroRNA delivery by engineered exosomes toward a Cell-Free osteoarthritis therapy [J]. ACS Appl Mater Interfaces, 2020, 12(33): 36938-36947.
|
9 |
Li SH, Chen L, Li JP, et al. Comparison of different protocols of RNA preparation from circulating blood for RNA sequencing [J]. Biotechnol Lett, 2021, 43(9): 1685-1698.
|
10 |
Gadkar VY, Filion M. New developments in quantitative real-time polymerase chain reaction technology [J]. Curr Issues Mol Biol, 2014, 16(Epub): 1-6.
|
11 |
Panni Simona, Lovering Ruth C, Porras Pablo, et al. Non-coding RNA regulatory networks [J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417.
|
12 |
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function [J]. Nucleic Acids Res, 2019, 47(D1): 55-62.
|
13 |
Anzelon TA, Chowdhury S, Hughes SM, et al. Structural basis for piRNA targeting [J]. 2021, 597(7875): 285-289.
|
14 |
Riffo-Campos Á, Riquelme I, Brebi-Mieville P. Tools for Sequence-Based miRNA target prediction: what to choose? [J]. Int J Mol Sci, 2016, 17(12): 1987.
|
15 |
Chen L, Zhang YH, Wang SP, et al. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways [J]. PLoS One, 2017, 12(9): e0184129.
|
16 |
Schober Patrick, Boer Christa, Schwarte Lothar A. Correlation Coefficients: Appropriate Use and Interpretation [J]. Anesth analg, 2018, 126(5):1763-1768.
|
17 |
Dalmaijer ES, Nord CL, astle DE. statistical power for cluster analysis [J]. BMC Bioinformatics, 2022, 23(1): 205.
|
18 |
Borrelli J, Olson SA, Godbout C, et al. Stannard JP and giannoudis PV: understanding articular cartilage injury and potential treatments [J]. J Orthop Trauma, 2019, 33(6): 6-12.
|
19 |
Wood MJ, Miller RE, Malfait AM. The Genesis of pain in osteoarthritis: inflammation as a mediator of osteoarthritis pain [J]. Clin Geriatr Med, 2022, 38(2): 221-238.
|
20 |
Saliminejad K, Khorram KH, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2019, 234(5): 5451-5465.
|
21 |
Wang YJ, Shen SP, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis [J]. Inflamm Res, 2020, 69(1): 63-73.
|
22 |
Ntoumou E, Tzetis M, Braoudaki M, et al. Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes [J]. Clin Epigenetics, 2017, 12(9): 127.
|
23 |
Papathanasiou I, Balis C, Destounis D, et al. NEAT1-mediated miR-150-5p downregulation regulates b-catenin expression in OA chondrocytes [J]. Funct Integr Genomics, 2023, 23(3): 246.
|
24 |
Leucci E, Patella F, Waage J, et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus [J]. Sci Rep, 2013, 3: 2535.
|
25 |
Zhang Y, Wang FY, Chen GX, et al. LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis [J]. Cell Biosci, 2019, 1(9): 54.
|
26 |
Fan YH, Li Y, Zhu YZ, et al. miR-301b-3p regulates breast cancer cell proliferation, migration, and invasion by targeting NR3C2 [J]. J Oncol, 2021, 2021: 8810517.
|
27 |
Liu HT, Ma XJ, Niu N, et al. MIR-301b-3p promotes lung adenocarcinoma cell proliferation, migration and invasion by targeting DLC1 [J]. Technol Cancer Res Treat, 2021, 20: 1533033821990036.
|
28 |
Zhang YL, Liu L, Su YW, et al. miR-6315 attenuates methotrexate Treatment-Induced decreased osteogenesis and increased adipogenesis potentially through modulating TGF-β/Smad2 signalling [J]. Biomedicines, 2021, 9(12): 1926.
|
29 |
Selvamurugan N, Kwok S, Alliston T, et al. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the Smad and MAPK signaling pathways and their components, Smad2 and Runx2 [J]. J Biol Chem, 2004, 279(18): 19327-19334.
|
30 |
Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis [J]. Nat Rev Rheumatol, 2012, 8(7): 390-8.
|
31 |
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis [J]. Am J Physiol Cell Physiol, 2023, 324(2): C377-C394.
|
32 |
De AL, Thode H, Eslambolchi Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev, 2022, 74(3): 712-768.
|
33 |
Shou YW, Wang XQ, Chen C, et al. Exosomal miR-301a-3p from esophageal squamous cell carcinoma cells promotes angiogenesis by inducing M2 polarization of macrophages via the PTEN/PI3K/AKT signaling pathway [J]. Cancer Cell Int, 2022, 22(1): 153.
|
34 |
Ghafouri-Fard S, Abak A, Tavakkoli AS, et al. Taheri M and samadian M: the impact of non-coding RNAs on macrophage polarization [J]. Biomed Pharmacother, 2021, 142: 112112.
|
35 |
Han CY, Yang Y, Sheng YJ, et al. The mechanism of lncRNA-CRNDE in regulating tumour-associated macrophage M2 polarization and promoting tumour angiogenesis [J]. J Cell Mol Med, 2021, 25(9): 4235-4247.
|
36 |
Wang BL, Wang Z, Nan X, et al. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway [J]. J Cell Physiol, 2019, 234(4): 4840-4850.
|