切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 46 -50. doi: 10.3877/cma.j.issn.2096-0263.2024.01.008

综述

人工智能在骨科诊断技术中的研究进展
李帅1, 李开南2,()   
  1. 1. 563003 遵义医科大学
    2. 610081 成都大学附属医院骨科
  • 收稿日期:2022-11-30 出版日期:2024-02-05
  • 通信作者: 李开南
  • 基金资助:
    成都市科技项目(2021YF0500461SN)

Research progress of artificial intelligence in orthopedic diagnosis technology

Shuai Li1, Kainan Li2,()   

  1. 1. Zunyi Medical University, Zunyi 563003, China
    2. Department of Orthopedics, Affiliated Hospital of Chengdu University, Chengdu 610081, China
  • Received:2022-11-30 Published:2024-02-05
  • Corresponding author: Kainan Li
引用本文:

李帅, 李开南. 人工智能在骨科诊断技术中的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(01): 46-50.

Shuai Li, Kainan Li. Research progress of artificial intelligence in orthopedic diagnosis technology[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2024, 10(01): 46-50.

人工智能(AI)技术目前已被广泛应用到医疗领域中。通过人工智能辅助临床诊断与治疗,不但能提高临床医生的工作效率、减轻工作负荷,同时也能为患者提供安全有效的保障,给临床疾病的诊断、治疗和康复带来巨大影响。骨科的大多数疾病的诊断需要影像学证据支撑,AI技术目前在图像识别方面的研究日趋完善,随着近些年骨科人工智能诊断技术在临床的应用,其发展前景与未来研究的重要性不言而喻。本文通过选取近几年来AI技术在骨科领域诊断的应用与研究进展进行综述,了解AI技术在骨科领域诊断中的应用与未来的发展趋势,以期促进AI技术与骨科领域的进一步融合与发展。

Artificial Intelligence (AI) technology is now widely used in the medical field.By assisting clinical diagnosis and treatment through artificial intelligence, it can not only improve clinicians' efficiency and reduce workload, but also provide safe and effective protection for patients, bringing great impact to the diagnosis, treatment and rehabilitation of clinical diseases.The diagnosis of most diseases in orthopaedics requires the support of imaging evidence. AI technology is now becoming more and more perfect in image recognition, and with the clinical application of orthopaedic artificial intelligence diagnosis technology in recent years, its development prospects and the importance of future research are self-evident.In this paper, we review the application and research progress of AI technology in orthopedic field diagnosis in recent years to understand the application and future development trend of AI technology in orthopedic field diagnosis, in order to promote the further integration and development of AI technology and orthopedic field.

1
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812.
2
中华人民共和国国务院.国务院关于印发新一代人工智能发展规划通知[R/OL]. 2017-07-20].

URL    
3
李媛,张恩龙,李文娟,等.人工智能在骨肌系统影像领域的研究进展[J].中国医学科学院学报, 2020, 42(2): 242-246.
4
张程.医学影像学在不同骨科疾病诊断中运用[J].影像研究与医学应用, 2020, 4(19): 3-5.
5
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis [J]. Med Image Anal, 2017, 42: 60-88.
6
Choy G, Khalilzadeh O, Michalski M, et al. Current applications and future impact of machine learning in radiology [J]. Radiology, 2018, 288(2): 318-328.
7
Nassif AB, Talib MA, Nasir Q, et al. Breast cancer detection using artificial intelligence techniques: A systematic literature review [J]. Artif Intell Med, 2022, 127: 102276.
8
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists [J]. Radiographics, 2017, 37(7): 2113-2131.
9
Singh H, Meyer AND, Thomas EJ. The frequency of diagnostic errors in outpatient care:estimations from three large observational studies involving US adult populations [J]. BMJ Qual Saf, 2014, 23(9): 727-731.
10
Hinton B, Ma L, Mahmoudzadeh AP, et al. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study [J]. Cancer Imaging, 2019, 19(1): 41.
11
Liang HY, Tsui BY, Ni H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence [J]. Nat Med, 2019, 25(3): 433-438.
12
Anderson P G, Baum G L, Keathley N, et al. Deep learning assistance closes the accuracy gap in fracture detection across clinician types [J]. Clin Orthop Relat Res, 2022, 10, 1097.
13
Dhanwal DK, Dennison EM, Harvey NC, et al. Epidemiology of hip fracture: Worldwide geographic variation [J]. Indian J Orthop, 2011, 45(1): 15-22.
14
Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study [J]. BMC Musculoskelet Disord, 2021, 22(1): 407.
15
Yamada Y, Maki S, Kishida S, et al. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs[J]. Acta Orthopaedica, 2020, 91(6): 699-704.
16
Liu P, Lu L, Chen Y, et al. Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10.
17
黄泽青,刘予豪,方汉军,等.基于深度迁移学习模型实现股骨头坏死与其他髋部疾病的X线片鉴别诊断[J].中华骨科杂志,2023,43(1):72-80. DOI:10.3760/cma.j.cn121113-20220831-00508.
18
Channareddy H. Epidemiological profile of articular fractures of distal radius [J]. Nat J Clin Orthop, 2018, 2(3): 20.
19
Suzuki T, Maki S, Yamazaki T, et al. Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons [J]. J Digit Imaging, 2022, 35(1): 39-46.
20
Gan K, Xu D, Lin Y, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments[J]. Acta orthopaedica, 2019, 90(4): 394-400.
21
Zhang J, Liu F, Xu J, et al. Automated detection and classification of acute vertebral body fractures using a convolutional neural network on computed tomography[J]. Frontiers in Endocrinology, 2023, 14.
22
Al-Helo S, Alomari RS, Ghosh S, et al. Compression fracture diagnosis in lumbar: a clinical CAD system [J]. Int J Comput Assist Radiol Surg, 2013, 8(3): 461-469.
23
Li YC, Chen HH, Lu HHS, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists? [J]. Clin Orthop Relat Res, 2021, 479(7): 1598.
24
Cho SH, Sung YM, Kim MS. Missed rib fractures on evaluation of initial chest CT for trauma patients:pattern analysis and diagnostic value of coronal multiplanar Reconstruction images with multidetector row CT [J]. Br J Radiol, 2012, 85(1018): e845-e850.
25
Zhou QQ, Wang J, Tang W, et al. Automatic detection and classification of rib fractures on thoracic CT using convolutional neural network:accuracy and feasibility [J]. Korean Journal of Radiology, 2020, 21(7): 869.
26
Yao LD, Guan XJ, Song XW, et al. Rib fracture detection system based on deep learning [J]. Sci Rep, 2021, 11(1): 23513.
27
Das P, Pal C, Acharyya A, et al. Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images [J]. Comput Meth Prog Bio, 2021, 205: 106074.
28
Tsai J Y, Hung I Y J, Guo Y L, et al. Lumbar disc herniation automatic detection in magnetic resonance imaging based on deep learning[J]. Front Bioeng Biotech, 2021, 9: 708137.
29
Li S, Yu XX, Shi RC, et al. MRI-based radiomics nomogram for differentiation of solitary metastasis and solitary primary tumor in the spine [J]. BMC Med Imaging, 2023, 23(1): 29.
30
Gitto S, Cuocolo R, Albano D, et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma [J]. Eur J Radiol, 2020, 128: 109043.
31
Nguyen TP, Chae DS, Park SJ, et al. A novel approach for evaluating bone mineral density of hips based on Sobel gradient-based map of radiographs utilizing convolutional neural network [J]. Comput Biol Med, 2021, 132: 104298.
32
Sato Y, Yamamoto N, Inagaki N, et al. Deep learning for bone mineral density and T-Score prediction from chest x-rays: a multicenter study [J]. Biomedicines, 2022, 10(9): 2323.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要