切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (01) : 33 -38. doi: 10.3877/cma.j.issn.2096-0263.2023.01.007

关节炎

芒果苷对骨关节炎的潜在治疗机制:通过抑制巨噬细胞NF-κB调节巨噬细胞M2极化
雷豆豆, 何浩强, 商怡丰, 郑立, 高明()   
  1. 530021 南宁,广西医科大学再生医学与医用生物资源开发应用协同创新中心;广西医科大学广西组织器官修复医用生物材料工程技术研究中心
    530021 南宁,广西医科大学再生医学与医用生物资源开发应用协同创新中心;530021 南宁,广西医科大学第一附属医院
  • 收稿日期:2022-06-23 出版日期:2023-02-05
  • 通信作者: 高明
  • 基金资助:
    广西科技基地和人才专项(桂科AD19254003)

Potential therapeutic mechanism of mangiferin for osteoarthritis: regulation of macrophage M2 polarization by inhibiting macrophages NF-κB

Doudou Lei, Haoqiang He, Yifeng Shang, Li Zheng, Ming Gao()   

  1. Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning 530021, China
    Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning 530021, China; First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
  • Received:2022-06-23 Published:2023-02-05
  • Corresponding author: Ming Gao
引用本文:

雷豆豆, 何浩强, 商怡丰, 郑立, 高明. 芒果苷对骨关节炎的潜在治疗机制:通过抑制巨噬细胞NF-κB调节巨噬细胞M2极化[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 33-38.

Doudou Lei, Haoqiang He, Yifeng Shang, Li Zheng, Ming Gao. Potential therapeutic mechanism of mangiferin for osteoarthritis: regulation of macrophage M2 polarization by inhibiting macrophages NF-κB[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(01): 33-38.

目的

芒果苷通过抑制巨噬细胞NF-κB调节巨噬细胞极化为M2,探索芒果苷治疗骨关节炎的潜在机制。

方法

RAW264.7小鼠巨噬细胞系进行体外培养,IL-4诱导巨噬细胞M2极化,用芒果苷对巨噬细胞进行干预。实验分为空白组、对照组和实验组。CCK-8检测芒果苷的细胞毒性。钙黄绿素(Calcein-AM)和碘化丙啶(PI)双荧光染色法检测细胞活性,流式细胞仪检测细胞凋亡的情况。免疫荧光染色评估甘露糖受体(CD206抗体)在巨噬细胞的分泌情况,实时荧光定量PCR(qRT-PCR)法检测NF-κB通路相关基因RelA(p65)及M2巨噬细胞相关基因CD206、IL-10的表达情况。

结果

浓度为20 μM的芒果苷对巨噬细胞无明显毒性作用,芒果苷在该浓度下能显著下调RelA的表达和上调IL-10、CD206的表达,从而抑制NF-κB通路激活巨噬细胞M2极化。

结论

芒果苷能够抑制巨噬细胞NF-κB调节巨噬细胞极化为M2,M2巨噬细胞具有抗炎功能,促进软骨修复功能,为芒果苷在骨关节炎的研究中提供可能的机制理论。

Objective

To investigate the effect of mangiferin on the treatment of osteoarthritis by inhibiting the NF-κB pathway and regulating the polarization of macrophages to M2.

Methods

The RAW264.7 mouse macrophage cell line was cultured in vitro, IL-4 induced M2 polarization of macrophages, and the macrophages were intervened with mangiferin. The experiment was divided into blank group, control group and experimental group. CCK-8 detected the cytotoxicity of mangiferin. Calcein-AM (calcein) and PI (propidium iodide) double fluorescent staining was used to detect cell viability, and flow cytometry was used to detect cell apoptosis. Immunofluorescence staining was used to evaluate the secretion of mannose receptor (CD206 antibody) in macrophages, and real-time quantitative PCR (qRT-PCR) was used to detect the NF-κB pathway-related gene RelA (p65) and M2 macrophage-related genes CD206, IL-10 expression.

Results

Mangiferin at a concentration of 20 μM had no significant toxic effect on macrophages, and mangiferin could significantly down-regulate the expression of RelA and up-regulate the expression of 1L-10 and CD206 at this concentration, thereby inhibiting the activation of M2 macrophages by the NF-κB pathway and thus alleviating arthritis in mice.

Conclusions

Mangiferin can inhibit the NF-κB pathway and regulate the polarization of macrophages to M2. M2 macrophages have anti-inflammatory functions and promote cartilage repair, which may provide a theoretical basis for new treatment of osteoarthritis.

表1 PCR引物序列
图1 CCK-8检测芒果苷对巨噬细胞的毒性作用与0 μM组比较,"***"表示P<0.001;"****"表示P<0.0001
图7~10 免疫荧光显示CD206的表达情况
图11~13 NF-κB通路及M2巨噬细胞相关基因和特异性基因的表达与空白组相比,"**"表示P<0.01,"***"表示P<0.001,"****"表示P<0.0001;与对照组相比,"#"表示P<0.05,"###"表示P<0.001,"####"表示P<0.0001
1
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis [J]. Lancet, 2019, 393(10182): 1745-1759.
2
Conaghan PG, Cook AD, Hamilton JA, et al. Therapeutic options for targeting inflammatory osteoarthritis pain [J]. Nat Rev Rheumatol, 2019, 15(6): 355-363.
3
Jebakani D B, Vimalavathini R, VeenaKumari DN. Knee osteoarthritis-a mini review [J]. World Journal of Pharmaceutical Research, 2021, 10(11): 2295-2303.
4
Sharma L. Osteoarthritis of the knee [J]. N Engl J Med, 2021, 384(1): 51-59.
5
Zheng W, Li X, Li J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model [J]. Ann N Y Acad Sci, 2022, 1512(1):141-153.
6
Sun Y, Zuo Z, Kuang Y. An emerging target in the battle against osteoarthritis: macrophage polarization [J]. Int J Mol Sci, 2020, 21(22): 8513.
7
Magni A, Agostoni P, Bonezzi C, et al. Management of osteoarthritis: expert opinion on NSAIDs [J]. Pain Ther, 2021, 10(2): 783-808.
8
Dar A, Faizi S, Naqvi S, et al. Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship [J]. Biol Pharm Bull, 2005, 28(4): 596-600.
9
Wang Y, Guo X, Fan X, et al. The protective effect of mangiferin on osteoarthritis:An in vitro and in vivo study [J]. Physiol Res, 2022, 71(1): 135-145.
10
Yulu W, Xinling GO, Xiaolong FN, et al. The protective effect of mangiferin on osteoarthritis:an in vitro and in vivo study [J]. Physiol Res, 2022, 71(1): 135.
11
Gunter NV, Teh SS, Lim YM, et al. Natural xanthones and skin inflammatory diseases: multitargeting mechanisms of action and potential application [J]. Front Pharmacol, 2020, 11: 594202.
12
Ma Y, Yang H, Zong X, et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics [J]. Biomaterials, 2021, 274: 120865.
13
Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation,progression of osteoarthritis and cartilage regeneration [J]. J Dev Biol, 2015, 3(4): 177-192.
14
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis:a review [J]. JAMA, 2021, 325(6): 568-578.
15
Kloppenburg M, Kwok WY. Hand osteoarthritis-a heterogeneous disorder [J]. Nat Rev Rheumatol, 2012, 8(1): 22-31.
16
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis [J]. Nat Rev Rheumatol, 2016, 12(7): 412-420.
17
Berenbaum F, Eymard F, Osteoarthritis HX. Inflammation and obesity [J]. Curr Opin Rheumatol, 2013, 25(1): 114-118.
18
Chow Y Y, Chin K Y. The role of inflammation in the pathogenesis of osteoarthritis [J]. Mediators Inflamm, 2020, 3(2020): 8293921.
19
Junger WG. Immune cell regulation by autocrine purinergic signalling [J]. Nat Rev Immunol, 2011, 11(3): 201-212.
20
Wu CL, Harasymowicz NS, Klimak MA, et al. The role of macrophages in osteoarthritis and cartilage repair [J]. Osteoarthritis Cartilage, 2020, 28(5): 544-554.
21
Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages [J]. Free Radic Biol Med, 2019, 145: 146-160.
22
Zhang J, Zheng Y, Luo Y, et al. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells [J]. Mol Immunol, 2019, 116: 29-37.
23
Zhou F, Mei J, Han X, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes [J]. Acta Pharm Sin B, 2019, 9(5): 973-985.
24
Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors [J]. J Leukoc Biol, 2010, 88(5): 877-884.
25
Chiang CF, Chao TT, Su YF, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling [J]. Oncotarget, 2017, 8(13): 20706.
26
He Y, Ma X, Li D, et al. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling [J]. J Cereb Blood Flow Metab, 2017, 37(8): 2938-2951.
27
Ye Y, Jin T, Zhang X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway [J]. Front Cell Neurosci, 2019, 13: 553.
28
Gaojian T, Dingfei Q, Linwei L, et al. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway [J]. Cell Death Discov, 2020, 6(1): 1-16.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[7] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[8] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[9] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[10] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[11] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[12] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[13] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[14] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[15] 张镇斌, 闫兆龙, 王功腾, 张文琦, 王旭凤, 李广兴, 孙华强, 李树锋. 关节镜对胫骨高位截骨术治疗膝骨关节炎的效果研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 218-225.
阅读次数
全文


摘要