切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2021, Vol. 07 ›› Issue (04) : 245 -251. doi: 10.3877/cma.j.issn.2096-0263.2021.04.008

综述

柠檬酸在骨质疏松疾病中作用的研究进展
张书勤1, 张群2,(), 谢登辉1,()   
  1. 1. 510000 广州,南方医科大学第三附属医院,骨科医学中心,关节外科与运动医学科;510000 广州,南方医科大学第三附属医院,临床药物研究基地;510000 广州,广东省骨科医院,广东省骨科研究院,骨与关节退行性疾病广东省重点实验室
    2. 510000 广州,南方医科大学第三附属医院,骨科医学中心,关节外科与运动医学科;510000 广州,南方医科大学第三附属医院,临床药物研究基地
  • 收稿日期:2021-06-25 出版日期:2021-08-05
  • 通信作者: 张群, 谢登辉
  • 基金资助:
    南方医科大学第三附属医院2020年青年科研启动基金项目(QN2020018); 广东省医学科学技术研究基金(B2021272); 国家自然科学基金(81772315;81975328)

Progress of citrate mechanism in bone and osteoporosis

Shuqin Zhang1, Qun Zhang2,(), Denghui Xie1,()   

  1. 1. Department of Orthopedics Medical Center, Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern MedicalUniversity, Guangzhou 510000, China; Office of Clinical Trial of Drug, The Third Affiliated Hospital of Southern MedicalUniversity, Guangzhou 510000, China; Orthopedic Hospital of Guangdong Province, Guangdong Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510000, China
    2. Department of Orthopedics Medical Center, Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern MedicalUniversity, Guangzhou 510000, China; Office of Clinical Trial of Drug, The Third Affiliated Hospital of Southern MedicalUniversity, Guangzhou 510000, China
  • Received:2021-06-25 Published:2021-08-05
  • Corresponding author: Qun Zhang, Denghui Xie
引用本文:

张书勤, 张群, 谢登辉. 柠檬酸在骨质疏松疾病中作用的研究进展[J]. 中华老年骨科与康复电子杂志, 2021, 07(04): 245-251.

Shuqin Zhang, Qun Zhang, Denghui Xie. Progress of citrate mechanism in bone and osteoporosis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2021, 07(04): 245-251.

柠檬酸盐是骨骼的重要组成部分,人体90%以上的柠檬酸都储存在骨组织,参与骨微结构和力学强度的维持。柠檬酸一直都作为三羧酸循环的重要中间体而被熟知,是一种必需的代谢物,参与多种生物过程,如能量代谢、成骨和血管生成。近年研究发现:柠檬酸在骨组织形成与骨矿化过程中可能发挥重要作用。进一步研究表明,骨质疏松症的严重程度与柠檬酸水平之间存在负相关,骨骼中柠檬酸盐的流失可能会加重骨质疏松症的发展。外源性柠檬酸补充剂以及基于柠檬酸的修复材料可能为防治骨质疏松和促进骨修复提供有效途径。本文综述了当前关于柠檬酸盐与骨质疏松之间关系的认识,阐述骨骼微环境中柠檬酸在骨形成、骨结构与功能发挥中的作用,探索其具体的调节机制,最后对柠檬酸补充剂和基于柠檬酸的骨修复材料的研究进展进行了总结和评价。这不仅进一步明确了骨生物学与骨代谢调控的关键科学问题,而且为新型骨修复材料的开发与应用提供理论依据。

Citrate is an important part of bones. More than 90% of the citric acid in the human body is stored in bone tissue, which participates in the maintenance of bone microstructure and mechanical strength. Citric acid has always been known as an important intermediate in the tricarboxylic acid cycle. It is an essential metabolite involved in various biological processes, such as energy metabolism, osteogenesis, and angiogenesis. Recent studies have found that citric acid may play an important role in the process of bone tissue formation and bone mineralization. Further studies have shown that there is a negative correlation between the severity of osteoporosis and the level of citric acid, and the loss of citrate in the bones may aggravate the development of osteoporosis. Exogenous citric acid supplements and citric acid-based repair materials may provide effective ways to prevent osteoporosis and promote bone repair. This paper reviews the current understanding of the relationship between citrate and osteoporosis, expounds the role of citric acid in bone formation, bone structure and function in the bone microenvironment, explores its specific regulation mechanism, and finally summarizes and evaluates the research progress of citric acid supplements and citric acid-based bone repair materials. This not only further clarifies the key scientific issues in bone biology and bone metabolism regulation, but also provides a theoretical basis for the development and application of new bone repair materials.

图1 柠檬酸体内循环和促成骨的概念示意图:营养摄入、肾脏清除、细胞代谢和骨骼重塑共同构成了体内柠檬酸稳态,重点强调了柠檬酸对间充质干细胞向成骨细胞分化的影响
1
Xianzuo Zhang, Haiyi Liang, Nikolaos Kourkoumelis, Comprehensive analysis of lncRNA and miRNA expression profiles and ceRNA network construction in osteoporosis [J]. Calcif Tissue Int, 2020, 106(4): 343-354.
2
William D Leslie, Colleen J Metge, Mahmoud Azimaee, et al. Direct costs of fractures in Canada and trends 1996-2006: a population-based cost-of-illness analysis [J]. J Bone Miner Res, 2011, 26(10): 2419-2429.
3
Ensrud KE, Crandall CJ. Osteoporosis [J]. Ann Intern Med, 2018, 168(4): 306-307.
4
Renata Caudarella, Fabio Vescini, Angela Buffa, et al. Citrate and mineral metabolism: kidney stones and bone disease [J]. Front Biosci, 2003, 8: s1084-s1106.
5
Penniston KL, Nakada SY, Holmes RP, et al. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products [J]. J Endourol, 2008, 22(3): 567-570.
6
Schuster E, Dunn-Coleman N, J C Frisvad, et al. On the safety of aspergillus niger--a review [J]. Appl Microbiol Biotechnol, 2002, 59(4/5): 426-435.
7
Wei Hu, Wen-Jian Li, Hai-Quan Yang, et al. Current strategies and ture prospects for enhancing microbial production of citric acid [J]. Appl Microbiol Biotechnol, 2019, 103(1): 201-209.
8
Birkenfeld AL, Lee HY, Fitsum Guebre-Egziabher, et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice [J]. Cell Metab, 2011, 14(2): 184-195.

URL    
9
Mycielska ME, Milenkovic VM, CH Wetzel, et al. Extracellular citrate in health and disease [J]. Curr Mol Med, 2015, 15(10): 884-891.
10
Mycielska ME, Dettmer K, Rümmele P, et al. Extracellular citrate affects critical elements of cancer cell metabolism and supports cancer development in vivo [J]. Cancer Res, 2018, 78(10): 2513-2523.
11
Chuying Ma, Xinggui Tian, Jimin P Kim, et al. Citrate-based materials fuel human stem cells by metabonegenic regulation [J]. Proc Natl Acad Sci U S A, 2018, 115(50): E11741-E11750.
12
Y-Y Hu, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone [J]. Proc Natl Acad Sci U S A, 2010, 107(52): 22425-22429.
13
Adams J, Wilson N, Hurkmans E, et al. 2019 EULAR points to consider for non-physician health professionals ro prevent and manage fragility fractures in adults 50 years or older [J]. Ann Rheum Dis 2021, 80(1): 57-64.
14
J A Kanis, N C Harvey, McCloskey E, et al. Algorithm for the management of patients at low,high and very high risk of osteoporotic fractures [J]. Osteoporos Int, 31(1): 1-12.
15
Zhe Wang, Yili Zhao, Yu Luo, et al. Electrospun attapulgite-doped poly(lactic-co-glycolic acid)nanofibers for osteogenic differentiation of human mesenchymal stem cells [J]. J Control Release, 2015, 213:247.
16
Hongdong Chen, Yeyang Wang, Huaiqian Dai, et al. Bone and plasma citrate is reduced in osteoporosis [J]. Bone, 2018, 114: 189-197.
17
Franklin Renty B, Meena Chellaiah, Jing Zou, et al. Evidence that osteoblasts are specialized citrate-producing cells that provide the citrate for incorporation into the structure of bone [J]. Open Bone J, 2014, 6: 1-7.
18
Dickens F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour [J]. Biochem J, 1941, 35(8/9): 1011-1023.
19
Seifter E, Lavine LS. Aspects of citric acid chemistry related to bone [J]. Bull N Y Acad Med, 1961, 37(3): 156-166.
20
Dixon TF, Perkins HR. Citric acid and bone metabolism [J]. Biochem J, 1952, 52(2): 260-265.
21
Hamm LL. Renal handling of citrate [J]. Kidney Int, 1990, 38(4): 728-735.
22
Cooper JF, Farid I. The role of citric acid in the physiology of the prostate. A chromatographic study of citric acid cycle intermediates in benign and malignant prostatic tissue [J]. J Surg Res, 1963, 3(63): 112-121.
23
Johnsson M, Richardson C F, J D Sallis, et al. Adsorption and mineralization effects of citrate and phosphocitrate on hydroxyapatite [J]. Calcif Tissue Int, 49(2): 134-137.
24
Erika Davies, Karin H Müller, Wai Ching Wong, et al. Citrate bridges between mineral platelets in bone [J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1354-E1363.
25
Donatella Granchi, Nicola Baldini, Fabio Massimo Ulivieri, et al. Role of citrate in pathophysiology and medical management of bone diseases [J]. Nutrients, 2019, 11(11): 2516.
26
Ying Guo, Richard T Tran, Denghui Xie, et al. Citrate-based biphasic scaffolds for the repair of large segmental bone defects [J]. J Biomed Mater Res A, 2015, 103(2): 772-781.
27
Costello Leslie C, Franklin Renty B. Plasma Citrate Homeostasis: How It Is Regulated; And Its Physiological and Clinical Implications [J]. HSOA J Hum Endocrinol, 2016, 1(1): 005.
28
Wacili Da, Lin Tao, Kaicheng Wen, et al. Protective role of melatonin against postmenopausal bone loss via enhancement of citrate secretion from osteoblasts [J]. 2020: 00667.
29
Costello LC, Chellaiah MA, Zou J, et al. In vitro BMP2 stimulation of osteoblast citrate production in concert with mineralized bone nodule formation [J]. J Regen Med Tissue Eng, 2015,0(4):1.
30
Binu SJ, Sudhakaran PR. Metabolite control of angiogenesis:angiogenic effect of citrate [J]. J Physiol Biochem, 2013,69(3): 383-395.

URL    
31
Tran RT, Yang J. Synthesis and characterization of biomimetic citrate-based biodegradable composites [J]. J Biomed Mater Res A, 2014,102(8): 2521-2532.
32
Costello LC, Franklin RB. A review of the important central role of altered citrate metabolism during the process of stem cell differentiation [J]. J Regen Med Tissue Eng, 2013, 0 (2): 1.
33
Rharass T, Lucas S. Mechanisms in endocrinology: bone marrow adiposity and bone,a bad romance? [J]. Eur J Endocrinol, 2018,179(4): R165-R182.
34
Xie B, Nancollas GH. How to control the size and morphology of apatite nanocrystals in bone [J]. Proc Natl Acad Sci U S A, 2010, 107(52): 22369-22370.
35
Lemma S, Sboarina M, Porporato PE, et al. Energy metabolism in osteoclast formation and activity [J]. Int J Biochem Cell Biol, 2016, 0(79): 168-180.
36
Kim JM, Min BM. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation [J]. Cell Physiol Biochem, 2007, 20(6): 935-946.
37
Iacobazzi V, Infantino V. Citrate--new functions for an old metabolite [J]. Biol Chem, 2014, 395(4): 387-399.
38
Icard P, Fournel L, Alifano M, et al. Extracellular citrate and cancer Metabolism-Letter [J]. Cancer Res, 2018, 78(17): 5176.
39
Shao CZ, Tang R. citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control [J]. Adv Mater, 2018, 30(8): 201704876.
40
Rudman DL, Kutner MH. Hypocitraturia in patients with gastrointestinal malabsorption [J]. N Engl J Med, 1980, 303(12): 657-661.
41
Watson JA, Lowenstein JM. Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria [J]. J Biol Chem, 1970, 245(22): 5993-6002.
42
Straub D. Calcium supplementation in clinical practice: a review of forms, doses, and indications [J]. Nutr Clin Pract, 2007, 22(3): 286-296.
43
Palermo AM, Falchetti A. Calcium citrate:from biochemistry and physiology to clinical applications [J]. Rev Endocr Metab Disord, 2019, 20(3): 353-364.
44
Kenny AM, Raisz LG. Comparison of the effects of Calcium loading with Calcium citrate or Calcium carbonate on bone turnover in postmenopausal women [J]. Osteoporos Int, 2004, 15(4): 290-294.
45
Ikeda H, Iida T, Hiramitsu M, et al. Effects of lemon beverage containing citric acid with calcium supplementation on Bone metabolism and mineral density in postmenopausal women: Double-blind 11-month intervention study [J]. J Nutr Metab, 2021, 8824753.
46
Thomas SD, Nordin BE. suppression of parathyroid hormone and bone resorption by Calcium carbonate and Calcium citrate in postmenopausal women [J]. Calcif Tissue Int, 2008, 83(2): 81-84.
47
Ruml LA, Sakhaee K, Peterson R, et al. The effect of calcium citrate on bone density in the early and mid-postmenopausal period: a randomized placebo-controlled study [J]. Am J Ther,1999, 6(6): 303-11.
48
Jehle SN, Krapf R. Effect of Potassium citrate on bone density,microarchitecture,and fracture risk in healthy older adults without osteoporosis:a randomized controlled trial [J]. J Clin Endocrinol Metab, 2013, 98(1): 2012-3099.
49
Macdonald HM, Black AJ, Aucott L, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial [J]. Am J Clin Nutr, 2008, 88(2): 465-74.
50
Marangella MS, Isaia GC. Effects of Potassium citrate supplementation on bone metabolism [J]. Calcif Tissue Int, 2004, 74(4): 330-335.
51
Jehle SN, Krapf R. Partial neutralization of the acidogenic Western diet with Potassium citrate increases bone mass in postmenopausal women with osteopenia [J]. J (Basel), 2006, 17(11): 3213-3222.
52
Gregory NS, Rodman JS. Potassium citrate decreases bone resorption in postmenopausal women with osteopenia: a randomized, double-blind clinical trial [J]. Endocr Pract, 2015, 21(12): 1380-1386.
53
Sellmeyer DE, Sebastian A. Potassium citrate prevents increased urine Calcium excretion and bone resorption induced by a high Sodium chloride diet [J]. J Clin Endocrinol Metab, 2002, 87(5): 2008-2012.
54
Granchi D, Caudarella R, Ripamonti C, et al. Potassium citrate supplementation decreases the biochemical markers of bone loss in a group of osteopenic women: The results of a randomized, double-blind, placebo-controlled pilot study [J]. Nutrients, 2018,10(9): 1293.
55
Karp HJ, Lamberg-Allardt CJ. Acute effects of Calcium carbonate, Calcium citrate and Potassium citrate on markers of Calcium and bone metabolism in young women [J]. Br J Nutr, 2009,102(9): 1341-1347.
56
Sakhaee KM, Pak CY. Effects of Potassium alkali and Calcium supplementation on bone turnover in postmenopausal women [J]. J Clin Endocrinol Metab, 2005,90(6): 2004-2451.
57
Kwan P. Osteoporosis: from osteoscience to neuroscience and beyond [J]. Mech Ageing Dev, 2015, 145: 26-38.
58
Wu XD, Tu J. Magnesium Calcium phosphate cement incorporating citrate for vascularized bone regeneration [J]. ACS Biomater Sci Eng, 2020, 6(11): 6299-6308.
59
Yokoyama AY, Nakasu M. Development of Calcium phosphate cement using chitosan and citric acid for bone substitute materials [J]. Biomaterials, 2002, 23(01): 00221-00226.
60
Fukuda NT, Ishikawa K. Effect of citric acid on setting reaction and tissue response to beta-TCP granular cement [J]. Biomed Mater, 2017, 12(1): 015027.
61
Bohner MP, Lemaitre J. Effect of several additives and their admixtures on the physico-chemical properties of a Calcium phosphate cement [J]. J Mater Sci Mater Med, 2000, 11(2): 111-116.
62
Kiminami K, Konishi T, Mizumoto M, et al. Effects of adding polysaccharides and citric acid into sodium dihydrogen phosphate mixing solution on the material properties of gelatin-hybridized calcium-phosphate cement [J]. Materials (Basel), 2017, 10(8): 0.
63
Sarda SF, Planell JA. Kinetic study of citric acid influence on Calcium phosphate bone cements as water-reducing agent [J]. J Biomed Mater Res, 2002, 61(4): 653-659.
64
Wang S, Xu C, Yu S, et al. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of Magnesium Calcium phosphate cement [J]. J Mech Behav Biomed Mater, 2019, 0(94): 42-50.
65
Gelli RP, Ridi F. unravelling the effect of citrate on the features and biocompatibility of Magnesium Phosphate-Based bone cements [J]. ACS Biomater Sci Eng, 2020,6(10): 5538-5548.
66
Tran RT, Ameer GA. Citrate-Based biomaterials and their applications in regenerative engineering [J]. Annu Rev Mater Res, 2015, (45): 277-310.
67
Guo J, Kim GB, Shan D, et al. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives [J]. Biomaterials, 2016 (112): 275-286.
68
Xie DT, Yang J. development of injectable Citrate-Based bioadhesive bone implants [J]. J Mater Chem B, 2015, (3): 387-398.
69
He Y, Li Q, Ma C, et al. Development of osteopromotive poly(octamethylene citrate glycerophosphate)for enhanced bone regeneration [J]. Acta Biomater, 2019 (93): 180-191.
70
Tang JB, Yang J. Fast degradable citrate-based bone scaffold promotes spinal fusion [J]. J Mater Chem B, 2015, 3(27): 5569-5576.
71
Guo J, Wang W, Hu J, et al. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives [J]. Biomaterials, 2016 (85): 204-217.
72
Perut F, Graziani G, Columbaro M, et al. Citrate supplementation restores the impaired mineralisation resulting from the acidic microenvironment: An in vitro study [J]. Nutrients, 2020, 12(12): 3779.
[1] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[2] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[3] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[4] 王明, 陈萍. 地舒单抗导致颌骨骨坏死一例及文献复习[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 180-183.
[5] 王玉芹, 刘冠群, 曲福君. IDH1和VEGF对非小细胞肺癌的诊断意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 847-849.
[6] 袁英淇, 闫润芝, 范益民. ATRX丢失与胶质瘤患者预后及IDH突变相关性的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 161-167.
[7] 张茜, 刘叶青, 康雪莹, 孙兵兵, 刘岩, 胡丽叶, 周亚茹. 血清铁蛋白与绝经后骨质疏松症的相关性分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(03): 166-171.
[8] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[9] 覃成禹, 周昊楠, 陈远明. 葛根素对绝经后骨质疏松大鼠不同部位骨骼的抗骨质疏松作用差异的研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 23-27.
[10] 雷礼辉, 李峰, 罗光平, 刘洪, 杨骐彰, 吴涛, 翁睿. 椎体CT值对原发性骨质疏松症唑来膦酸钠疗效的评价价值[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 285-289.
[11] 金万通, 薛海鹏, 周大鹏, 刘兵, 纪振钢, 马翔宇, 杨超, 张昊, 韩宁, 宗宇宁, 张咏晧, 马泽方. 3D打印结合PMMA骨水泥髓内支撑技术在老年肱骨近端骨质疏松性骨折中的应用[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 276-284.
[12] 蔡金辉, 叶浩翊, 申忱, 林良业, 刁凡登, 郭栋华, 刘志锋, 刘庆余. 椎体压缩骨折机会性筛查:常规胸部、腹部CT测量T12、L1椎体CT值的价值[J]. 中华老年骨科与康复电子杂志, 2022, 08(04): 217-223.
[13] 蔡林秀, 解强, 张曦, 高俊, 孔泳. 抗骨质疏松药物不同给药途径研究进展[J]. 中华老年骨科与康复电子杂志, 2022, 08(01): 60-64.
[14] 蔡莉萍, 燕琪慧, 郭蔚莹. TNF-α在绝经后骨质疏松症中的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(03): 274-279.
[15] 白晓辉, 张龙, 王永峰, 冯毅, 赵斌, 吕智, 徐朝健. 单侧与双侧经皮椎体成形术治疗Kummell病的疗效比较[J]. 中华老年病研究电子杂志, 2023, 10(02): 14-18.
阅读次数
全文


摘要