切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (06) : 341 -345. doi: 10.3877/cma.j.issn.2096-0263.2018.06.005

所属专题: 文献

基础研究

转染音猬因子对骨髓间充质干细胞成骨分化的影响
贾祎佳1, 孙吉平1, 刘强1, 郝海虎1, 朱剑1, 吴斗1,()   
  1. 1. 030032 太原,山西医学科学院 山西大医院骨科
  • 收稿日期:2018-06-19 出版日期:2018-12-05
  • 通信作者: 吴斗
  • 基金资助:
    山西省自然科学基金(2013011057-4)

The effects of bone marrow stromal cells transferred with lentivirat—mediated Sonic Hedgehog (Shh) gene in osteoporosis

Yijia Jia1, Jiping Sun1, Qiang Liu1, Haihu Hao1, Jian Zhu1, Dou Wu1,()   

  1. 1. Department of Orthopaedics, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China
  • Received:2018-06-19 Published:2018-12-05
  • Corresponding author: Dou Wu
  • About author:
    Corresponding author: Wu Dou, Email:
引用本文:

贾祎佳, 孙吉平, 刘强, 郝海虎, 朱剑, 吴斗. 转染音猬因子对骨髓间充质干细胞成骨分化的影响[J/OL]. 中华老年骨科与康复电子杂志, 2018, 04(06): 341-345.

Yijia Jia, Jiping Sun, Qiang Liu, Haihu Hao, Jian Zhu, Dou Wu. The effects of bone marrow stromal cells transferred with lentivirat—mediated Sonic Hedgehog (Shh) gene in osteoporosis[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(06): 341-345.

目的

建立能够持续稳定表达音猬因子(Shh)的骨髓基质干细胞(BMSCs),观察其成骨分化能力,为体内治疗骨质疏松提供可行性依据。

方法

使用Gateway Technology构建pDown-DsRed-Shh,贴壁培养法获取SD大鼠BMSCs,慢病毒转染法将pDown-DsRed-Shh、pDown-DsRed报告质粒转染进BMSCs,分为DsRed-BMSCs组(A组)和Shh-DsRed-BMSCs组(B组),荧光显微镜下观察DsRed表达,判断转染效率。48 h后使用RT-PCR法和Western印迹法检测Shh基因的表达情况,7 d后检测碱性磷酸酶(ALP)活性,28 d后茜素红染色检测骨髓间充质干细胞的成骨情况。

结果

慢病毒转染24 h后Shh-DsRed-BMSCs的转染率约为90%。同A组相比,B组能持续稳定高水平表达Shh mRNA和蛋白,同A组相比,B组的ALP活性更强,差异具有统计学意义(t=17.665,P<0.05),B组的茜素红染色表达情况明显高于A组。

结论

慢病毒转染音猬因子的骨髓间充值干细胞可以导致Shh的持续稳定高水平表达,并具有很高的成骨细胞分化能力,为骨质疏松的体内治疗提供了理论基础。

Objective

To observe osteogenous differentiation of modified bone marrow stromal cells (BMSCs) which can express Sonic Hedgehog (Shh) stably and provide the treatment of osteoporosis in vivo feasibility.

Methods

BMSCs were infected with lentiviruses using a lentiviral vector containing the DsRed or the Shh-DsRed gene and then divided into Shh-DsRed- BMSCs group (group A) and DsRed- BMSCs group (group B). The transfection efficiency were evaluated by fluorescence microscopy using DsRed expression. The expression of Shh was tested by RT-PCR and Western-blot analysis after 48 hours. The osteogenous differentiation of BMSCs were analysed by ALP testing after 7 days, and tested by alizarin red staining after 28 days.

Results

The transfeetion efficiency was about 90% after 24 hours in Shh-DsRed-BMSCs. Compared with the group B, the Shh-DsRed-BMSCs can stably secrete Shh mRNA and protein. The ALP activity in Shh-DsRed-BMSCs group was significantly greater than those in DsRed-BMSCs. The alizarin red staining expression in group A was markedly higher than those in group B.

Conclusion

Shh-DsRed-BMSCs can long-term and stably secrete high levels of Shh, has a high ability of osteoblast differentiation and was then the basis for the subsequent treatment for osteoporosis in vivo.

图4~5 慢病毒载体转染BMSCs 5 d后。图4 DsRed-BMSCs(×100);图5 Shh-DsRed-BMSCs(×100)
图6 Shh基因的mRNA的表达
图7 Shh-BMSCs中Shh蛋白的表达情况
图8~9 两组成骨诱导分化28 d后茜素红染色情况。图8 A组茜素红染色情况(×100);图9 B组素红染色情况(×100)
图10 两组成骨诱导分化28 d后茜素红染色吸光度值的比较
图11 两组ALP活性定量检测比较
1
Migliaccio S, Brama M, Malavolta N. Management of glucocorticoids-inducedosteoporosis: role ofteriparatide[J]. Ther Clin Risk Manag, 2009, 5(2):305-310.
2
Adler RA. Glucocorticoid-induced osteoporosis:management update[J]. Curr Osteoporos Rep, 2010, 8(1):10-14.
3
Ma XL, Zhang XE, Jia YF, et al. Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells[J]. Int Orthop, 2013, 37(7):1399-1404.
4
Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment[J]. Drug Des Devel Ther, 2013, 7:435-447.
5
原林,王军,王春雷,等.人体内新的功能系统--支持储备及自体监控系统新学说[J].科技导报, 2006, 24(6):85-89.
6
Bai Y, Yuan L, Soh KS, et al. Possible applications for fascial anatomy and fasciaology in traditional Chinese medicine[J]. J Acupunct Meridian Stud, 2010, 3(2):125-132.
7
张晓玲,戴尅戎,汤亭亭,等.未分化骨髓间充质干细胞的免疫学特性研究[J].中华实验外科杂志, 2006, 23(2):135-137.
8
Lien CY, Ho KC, Lee OK, et al. Restoration of bone mass and strength in Glucocorticoid-Treated mice by systemic transplantation of CXCR4 and cbfa-1 Co-Expressing mesenchymal stem cells[J]. J Bone Miner Res, 2009, 24(5):837-848.
9
Soltanoff CS, Yang S, Chen W, et al. Transient inhibitiion of the hedgehog pathway in young mice causes permanent defects in bone structure[J]. Crit Rev Eukaryot Gene Expr, 2009, 19(1):1-46.
10
Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate[J]. Blood, 2008, 111(2):492-503.
11
Foppiano S, Hu D, Marcucio RS, et al. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development[J]. Dev Biol, 2007, 312(1):103-114.
12
Spinella-Jaegle S, Rawadi G, Kawai S, et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation[J]. J Cell Sci, 2001, 114(11):2085-2094.
13
Ingram WJ, Wicking CA, Grimmond SM, et al. Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells[J]. Oncogene, 2002, 21(53):8196-8205.
14
Shefer S, Salen G, Batta AK, et al. Markedly inhibited 7-dehydrocholesterol delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes[J]. J Clin Invest, 1995, 96(4):1779-1785.
15
Beloti MM, Bellesini LS, Rosa AL. Purmorphamine enhances osteogenic activity of human osteoblasts derived from bone marrow mesenchymal cells[J]. Cell Biol Int, 2005, 29(7):537-541.
16
Cai J, Huang Y, Chen X, et al. [Regulation of sonic hedgehog on vascularendothelial growth factor,basic fibroblast growth factor expression and secretion in bone marrow mesenchymal stem cells][J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2012, 26(1):112-116.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?