切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (06) : 346 -351. doi: 10.3877/cma.j.issn.2096-0263.2018.06.006

所属专题: 文献

基础研究

hIGF-1基因改良修饰人脐血间充质细胞的研究
孙一1, 李大伟1, 张海宁1,()   
  1. 1. 266000 青岛大学附属医院关节外科
  • 收稿日期:2018-07-05 出版日期:2018-12-05
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金(81672197)

The study on modification of human umbilical cord blood mesenchymal cells by hIGF-1 gene

Yi Sun1, Dawei Li1, Haining Zhang1,()   

  1. 1. Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2018-07-05 Published:2018-12-05
  • Corresponding author: Haining Zhang
  • About author:
    Corresponding author: Zhang Haining, Email:
引用本文:

孙一, 李大伟, 张海宁. hIGF-1基因改良修饰人脐血间充质细胞的研究[J/OL]. 中华老年骨科与康复电子杂志, 2018, 04(06): 346-351.

Yi Sun, Dawei Li, Haining Zhang. The study on modification of human umbilical cord blood mesenchymal cells by hIGF-1 gene[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(06): 346-351.

目的

研究hIGF-1基因改良修饰人脐血间充质干细胞的方法,为关节软骨组织工程修复提供良好的种子细胞。

方法

综合应用密度梯度离心法和细胞贴壁法分离培养人脐血间充质干细胞,流式细胞仪进行细胞鉴定。通过X-tremen HP介导将含hIGF-1基因全长的真核表达载体pIRES2-EGFP-hIGF-I转染人脐血间充质干细胞,倒置荧光显微镜检测转染后荧光蛋白的表达,计算转染效率,ELISA检测转染后细胞上清液中hIGF-1的含量变化,免疫荧光与RT-PCR检测hIGF-1在细胞中的表达,免疫组化检测Ⅱ型胶原表达。

结果

人脐血间充质干细胞表面表达CD105(99.93%)、CD90(99.85%)、CD146(73.63%),不表达Anti-HLA-DR(1.38%)、CD45(0.13%)、CD34(0.11%)。hIGF-1基因可在X-tremen HP介导下转染人脐血间充质干细胞,48 h转染效率为(29±8)%。转染后48 h分泌的hIGF-1最多,为(34.89±0.38)ng/ml,且与对照组相比,差异具有统计学意义(P<0.01)。转染后细胞可检测到hIGF-1 mRNA、蛋白以及Ⅱ型胶原表达。

结论

hIGF-1基因可通过X-tremen HP介导改良修饰人脐血间充质干细胞,促进hIGF-1和Ⅱ型胶原的表达与分泌。

Objective

To study the modification of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) by hIGF-1 gene, and provide good seed cells for tissue engineering repair of articular cartilage.

Methods

hUCB-MSCs were isolated and cultured by density gradient centrifugation and cell adherence method, and cell identification was performed by flow cytometry. The eukaryotic expression vector, pIRES2-EGFP-hIGF-I, containing the full length of hIGF-1 gene was transfected into hUCB-MSCs via X-tremen HP. After transfection, the expression of fluorescent protein was detected by reverse fluorescence microscope and the transfection efficiency was calculated. ELISA was used to detect the content of hIGF-1 in the cell supernatant after transfection, and the immunofluorescence and RT-PCR were used to detect hIGF-1 in the hUCB-MSCs. The expression of the typeⅡ collagen was detected by immunohistochemistry.

Results

Flow cytometry showed that the hUCB-MSCs expressed CD90, CD105 and CD146 positively, and CD34, CD45, Anti-HLA-DR negatively. hIGF-1 gene was introduced into hUCB-MSCs with X-treme GENE HP DNA transfection reagent, and the transfection efficiency is (29+8)%. The hIGF-1 protein concentration in the supernatants determined by ELISA had significant difference between transfection group and control group (P<0.01). ELISA result showed that the hIGF-1 protein concentration in the supernatants determined after transfection at high level [(35±0.4)ng/ml] at 48 h point. The expression of hIGF-1 was detected by immunofluorescence and RT-PCR identification. Immunohistochemistry showed positive expression of type Ⅱcollagen after transfection.

Conclusions

hIGF-1 gene can modify human umbilical cord blood mesenchymal stem cells through X-tremen HP mediated modification, and promote the expression and secretion of hIGF-1 and type Ⅱ collagen.

图3 细胞生长曲线,3~6 d对数生长期,7 d后进入平台期
图11 RT-PCR结果(M为Marker;A、C为内参照;B为实验组pIRES2-EGFP-hIGF-I;D为空质粒对照组)
图14 细胞免疫组化显示未转染后细胞无Ⅱ型胶原的表达(×200)
表1 两组人脐血干细胞基因转染后不同时间点hIGF-1蛋白浓度的比较(ng/ml,±s
1
Graessel S, Lorenz J. Tissue-Engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells[J]. Curr Rheumatol Rep, 2014, 16(10):452.
2
Berninger MT, Wexel G, Rummeny EJ, et al. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots[J]. J Vis Exp, 2013 (75):e4423.
3
靳超,亓建洪.干细胞构建软骨组织工程研究进展[J].中国矫形外科杂志, 2015 (12):1099-1103.
4
Yamagata K, Nakayamada S, Tanaka Y. Use of mesenchymal stem cells seeded on the scaffold in articular cartilage repair[J]. Inflamm Regen, 2018, 38:4.
5
Mohan S, Bhat CG, Wergedal JE. In vivo evidence of IGF-I-estrogen crosstalk in mediating the cortical bone response to mechanical strain[J]. Bone Res, 2014, 2:14007.
6
Jones KJ, Sheppard WL, Arshi A, et al. Articular Cartilage Lesion Characteristic Reporting Is Highly Variable in Clinical Outcomes Studies of the Knee[J]. Cartilage, 2018: 1947603518756464.
7
Oryan A, Kamali A, Moshiri A, et al. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence?[J]. Cells Tissues Organs, 2017, 204(2):59-83.
8
Attia N, Santos E, Abdelmouty H, et al. Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginate-poly-l-lysine-alginate microcapsules[J]. J Microencapsul, 2014, 31(6):579-589.
9
Ha CW, Park YB, Chung JY, et al. Cartilage repair using composites of human umbilical cord Blood-Derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model[J]. Stem Cells Transl Med, 2015, 4(9):1044-1051.
10
Hyung-Sik K, Tae-Hoon S, Byung-Chul L, et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2[J]. Gastroenterology, 2013, 145(6):1392-1403.
11
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000, 109(1):235-242.
12
Shawki S, Gaafar T, Erfan H, et al. Immunomodulatory effects of umbilical cord-derived mesenchymal stem cells[J]. Microbiol Immunol, 2015, 59(6):348-356.
13
Tessier L, Bienzle D, Williams LB, et al. Phenotypic and immunomodulatory properties of equine cord Blood-Derived mesenchymal stromal cells[J]. PLoS One, 2015, 10(4):e0122954.
14
Doorn J, Roberts SJ, Hilderink J, et al. Insulin-Like growth Factor-I enhances proliferation and differentiation of human mesenchymal stromal cells in vitro[J]. Tissue Eng Part A, 2013, 19(15/16):1817-1828.
15
Secco M, Bueno J, Vieira NM, et al. Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2 (dy/2j) dystrophic mice[J]. Stem Cell Rev, 2013, 9(1):93-109.
16
Granero-Molto F, Myers TJ, Weis JA, et al. Mesenchymal stem cells expressing Insulin-Like growth Factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects[J]. Stem Cells, 2011, 29(10):1537-1548.
17
Petrou M, Niemeyer P, Stoddart MJ, et al. Mesenchymal stem cell chondrogenesis:composite growth factor-bioreactor synergism for human stem cell chondrogenesis[J]. Regen Med, 2013, 8(2):157-170.
18
Gugjoo MB, Amarpal, Abdelbaset-Ismail AA, et al. Mesenchymal stem cells with IGF-1 and TGF-beta 1 in laminin gel for osteochondral defects in rabbits[J]. Biomedicine & Pharmacotherapy, 2017, 93:1165-1174.
19
Doi K, Takeuchi Y. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials[J]. Uirusu, 2015, 65(1):27-36.
20
Sats NV, Shipunova IN, Bigil'diev AE, et al. Stable lentiviral vector transfer into mesenchymal stem cells in vivo[J]. Bull Exp Biol Med, 2015, 159(6):764-767.
21
Alton EW, Boyd AC, Porteous DJ, et al. A Phase I/IIa Safety and Efficacy Study of Nebulized Liposome-mediated Gene Therapy for Cystic Fibrosis Supports a Multidose Trial[J]. Am J Respir Crit Care Med, 2015, 192(11):1389-1392.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?