切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (06) : 346 -351. doi: 10.3877/cma.j.issn.2096-0263.2018.06.006

所属专题: 文献

基础研究

hIGF-1基因改良修饰人脐血间充质细胞的研究
孙一1, 李大伟1, 张海宁1,()   
  1. 1. 266000 青岛大学附属医院关节外科
  • 收稿日期:2018-07-05 出版日期:2018-12-05
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金(81672197)

The study on modification of human umbilical cord blood mesenchymal cells by hIGF-1 gene

Yi Sun1, Dawei Li1, Haining Zhang1,()   

  1. 1. Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2018-07-05 Published:2018-12-05
  • Corresponding author: Haining Zhang
  • About author:
    Corresponding author: Zhang Haining, Email:
引用本文:

孙一, 李大伟, 张海宁. hIGF-1基因改良修饰人脐血间充质细胞的研究[J]. 中华老年骨科与康复电子杂志, 2018, 04(06): 346-351.

Yi Sun, Dawei Li, Haining Zhang. The study on modification of human umbilical cord blood mesenchymal cells by hIGF-1 gene[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(06): 346-351.

目的

研究hIGF-1基因改良修饰人脐血间充质干细胞的方法,为关节软骨组织工程修复提供良好的种子细胞。

方法

综合应用密度梯度离心法和细胞贴壁法分离培养人脐血间充质干细胞,流式细胞仪进行细胞鉴定。通过X-tremen HP介导将含hIGF-1基因全长的真核表达载体pIRES2-EGFP-hIGF-I转染人脐血间充质干细胞,倒置荧光显微镜检测转染后荧光蛋白的表达,计算转染效率,ELISA检测转染后细胞上清液中hIGF-1的含量变化,免疫荧光与RT-PCR检测hIGF-1在细胞中的表达,免疫组化检测Ⅱ型胶原表达。

结果

人脐血间充质干细胞表面表达CD105(99.93%)、CD90(99.85%)、CD146(73.63%),不表达Anti-HLA-DR(1.38%)、CD45(0.13%)、CD34(0.11%)。hIGF-1基因可在X-tremen HP介导下转染人脐血间充质干细胞,48 h转染效率为(29±8)%。转染后48 h分泌的hIGF-1最多,为(34.89±0.38)ng/ml,且与对照组相比,差异具有统计学意义(P<0.01)。转染后细胞可检测到hIGF-1 mRNA、蛋白以及Ⅱ型胶原表达。

结论

hIGF-1基因可通过X-tremen HP介导改良修饰人脐血间充质干细胞,促进hIGF-1和Ⅱ型胶原的表达与分泌。

Objective

To study the modification of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) by hIGF-1 gene, and provide good seed cells for tissue engineering repair of articular cartilage.

Methods

hUCB-MSCs were isolated and cultured by density gradient centrifugation and cell adherence method, and cell identification was performed by flow cytometry. The eukaryotic expression vector, pIRES2-EGFP-hIGF-I, containing the full length of hIGF-1 gene was transfected into hUCB-MSCs via X-tremen HP. After transfection, the expression of fluorescent protein was detected by reverse fluorescence microscope and the transfection efficiency was calculated. ELISA was used to detect the content of hIGF-1 in the cell supernatant after transfection, and the immunofluorescence and RT-PCR were used to detect hIGF-1 in the hUCB-MSCs. The expression of the typeⅡ collagen was detected by immunohistochemistry.

Results

Flow cytometry showed that the hUCB-MSCs expressed CD90, CD105 and CD146 positively, and CD34, CD45, Anti-HLA-DR negatively. hIGF-1 gene was introduced into hUCB-MSCs with X-treme GENE HP DNA transfection reagent, and the transfection efficiency is (29+8)%. The hIGF-1 protein concentration in the supernatants determined by ELISA had significant difference between transfection group and control group (P<0.01). ELISA result showed that the hIGF-1 protein concentration in the supernatants determined after transfection at high level [(35±0.4)ng/ml] at 48 h point. The expression of hIGF-1 was detected by immunofluorescence and RT-PCR identification. Immunohistochemistry showed positive expression of type Ⅱcollagen after transfection.

Conclusions

hIGF-1 gene can modify human umbilical cord blood mesenchymal stem cells through X-tremen HP mediated modification, and promote the expression and secretion of hIGF-1 and type Ⅱ collagen.

图3 细胞生长曲线,3~6 d对数生长期,7 d后进入平台期
图11 RT-PCR结果(M为Marker;A、C为内参照;B为实验组pIRES2-EGFP-hIGF-I;D为空质粒对照组)
图14 细胞免疫组化显示未转染后细胞无Ⅱ型胶原的表达(×200)
表1 两组人脐血干细胞基因转染后不同时间点hIGF-1蛋白浓度的比较(ng/ml,±s
1
Graessel S, Lorenz J. Tissue-Engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells[J]. Curr Rheumatol Rep, 2014, 16(10):452.
2
Berninger MT, Wexel G, Rummeny EJ, et al. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots[J]. J Vis Exp, 2013 (75):e4423.
3
靳超,亓建洪.干细胞构建软骨组织工程研究进展[J].中国矫形外科杂志, 2015 (12):1099-1103.
4
Yamagata K, Nakayamada S, Tanaka Y. Use of mesenchymal stem cells seeded on the scaffold in articular cartilage repair[J]. Inflamm Regen, 2018, 38:4.
5
Mohan S, Bhat CG, Wergedal JE. In vivo evidence of IGF-I-estrogen crosstalk in mediating the cortical bone response to mechanical strain[J]. Bone Res, 2014, 2:14007.
6
Jones KJ, Sheppard WL, Arshi A, et al. Articular Cartilage Lesion Characteristic Reporting Is Highly Variable in Clinical Outcomes Studies of the Knee[J]. Cartilage, 2018: 1947603518756464.
7
Oryan A, Kamali A, Moshiri A, et al. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence?[J]. Cells Tissues Organs, 2017, 204(2):59-83.
8
Attia N, Santos E, Abdelmouty H, et al. Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginate-poly-l-lysine-alginate microcapsules[J]. J Microencapsul, 2014, 31(6):579-589.
9
Ha CW, Park YB, Chung JY, et al. Cartilage repair using composites of human umbilical cord Blood-Derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model[J]. Stem Cells Transl Med, 2015, 4(9):1044-1051.
10
Hyung-Sik K, Tae-Hoon S, Byung-Chul L, et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2[J]. Gastroenterology, 2013, 145(6):1392-1403.
11
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000, 109(1):235-242.
12
Shawki S, Gaafar T, Erfan H, et al. Immunomodulatory effects of umbilical cord-derived mesenchymal stem cells[J]. Microbiol Immunol, 2015, 59(6):348-356.
13
Tessier L, Bienzle D, Williams LB, et al. Phenotypic and immunomodulatory properties of equine cord Blood-Derived mesenchymal stromal cells[J]. PLoS One, 2015, 10(4):e0122954.
14
Doorn J, Roberts SJ, Hilderink J, et al. Insulin-Like growth Factor-I enhances proliferation and differentiation of human mesenchymal stromal cells in vitro[J]. Tissue Eng Part A, 2013, 19(15/16):1817-1828.
15
Secco M, Bueno J, Vieira NM, et al. Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2 (dy/2j) dystrophic mice[J]. Stem Cell Rev, 2013, 9(1):93-109.
16
Granero-Molto F, Myers TJ, Weis JA, et al. Mesenchymal stem cells expressing Insulin-Like growth Factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects[J]. Stem Cells, 2011, 29(10):1537-1548.
17
Petrou M, Niemeyer P, Stoddart MJ, et al. Mesenchymal stem cell chondrogenesis:composite growth factor-bioreactor synergism for human stem cell chondrogenesis[J]. Regen Med, 2013, 8(2):157-170.
18
Gugjoo MB, Amarpal, Abdelbaset-Ismail AA, et al. Mesenchymal stem cells with IGF-1 and TGF-beta 1 in laminin gel for osteochondral defects in rabbits[J]. Biomedicine & Pharmacotherapy, 2017, 93:1165-1174.
19
Doi K, Takeuchi Y. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials[J]. Uirusu, 2015, 65(1):27-36.
20
Sats NV, Shipunova IN, Bigil'diev AE, et al. Stable lentiviral vector transfer into mesenchymal stem cells in vivo[J]. Bull Exp Biol Med, 2015, 159(6):764-767.
21
Alton EW, Boyd AC, Porteous DJ, et al. A Phase I/IIa Safety and Efficacy Study of Nebulized Liposome-mediated Gene Therapy for Cystic Fibrosis Supports a Multidose Trial[J]. Am J Respir Crit Care Med, 2015, 192(11):1389-1392.
[1] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[11] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要