切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (05) : 308 -311. doi: 10.3877/cma.j.issn.2096-0263.2018.05.010

所属专题: 文献

综述

骨组织细胞外泌体对骨代谢作用的研究现状
吴石磊1, 刘勇1,(), 邵增务1, 田青1   
  1. 1. 430074 武汉,华中科技大学同济医学院附属协和医院骨科
  • 收稿日期:2017-10-09 出版日期:2018-10-05
  • 通信作者: 刘勇
  • 基金资助:
    国家自然科学基金青年科学基金(30800654)

Research status of bone tissue-derived exosomes on bone metabolism

Shilei Wu1, Yong Liu1,(), Zengwu Shao1, Qing Tian1   

  1. 1. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2017-10-09 Published:2018-10-05
  • Corresponding author: Yong Liu
  • About author:
    Corresponding author: Liu Yong, Email:
引用本文:

吴石磊, 刘勇, 邵增务, 田青. 骨组织细胞外泌体对骨代谢作用的研究现状[J/OL]. 中华老年骨科与康复电子杂志, 2018, 04(05): 308-311.

Shilei Wu, Yong Liu, Zengwu Shao, Qing Tian. Research status of bone tissue-derived exosomes on bone metabolism[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(05): 308-311.

骨质疏松症是老年人的常见病和多发病,骨组织来源细胞可分泌外泌体,包装和运载多种活性物质,如蛋白质、miRNAs、各种活性因子等,进行细胞间物质交换和信息交流,根据骨组织来源细胞外泌体和内容物的特点,利用其调节骨形成和骨吸收平衡的作用,甚至作为生物或基因治疗的载体,为老年骨质疏松症的防治提供全新的思路。

Osteoporosis is a common and frequently occurring disease in the elderly. Studies found that the bone derived cells can also secrete the exsomes packaging and delivering a variety of active substances, such as protein, miRNAs, various active factors, carrying out the exchange of material and information between cells. According to the characteristics and contents of bone-derived exosomes, they can be used to regulate bone formation and bone resorption balance, even as carrier of biological or gene therapy, this kind of research may provide a new idea for the prevention and treatment of osteoporosis in the elderly.

表1 四种骨组织细胞来源外泌体标记及包含物特点
[1]
North Ameirican Menopause Society. Estrogen and progestogen use in postmenopausal women: 2010 position statement of The North American Menopause [J]. Menopause, 2010, 17(2): 242-255.
[2]
Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 [J]. J Bone Miner Res, 2007, 22(3): 465-475.
[3]
Gehlbach SH, Avrunin JS, Puleo E, et al. Fracture risk and antiresorptive medication use in older women in the USA [J]. Osteoporos Int, 2007, 18(6): 805-810.
[4]
Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle [J]. Cancers (Basel), 2013, 5(4): 1522-1544.
[5]
Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
[6]
Deng LL, Wang YP, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.
[7]
Huynh N, Vonmoss L, Smith D, et al. Characterization of regulatory extracellular vesicles from osteoclasts [J]. J Dent Res, 2016, 95(6): 673-679.
[8]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. J Cell Biol, 2013, 200(4): 373-383.
[9]
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more [J]. Trends Cell Biol, 2009, 19(2): 43-51.
[10]
Runz S, Keller S, Rupp C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM [J]. Gynecol Oncol, 2007, 107(3): 563-571.
[11]
Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63 [J]. Exp Cell Res, 2009, 315(9): 1584-1592.
[12]
Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity [J]. Cell Discov, 2016, 2(2): 16015.
[13]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation [J]. Nat Commun, 2016, 7(7): 10872.
[14]
Deng L, Wang Y, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.
[15]
Antonyak MA, Li B, Boroughs LK, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 4852-4857.
[16]
Xie Y, Chen Y, Zhang L, et al. The roles of bone-derived exosomes and exosomal microRNAsin regulating bone remodeling [J]. J Cell Mol Med, 2017, 21(5): 1033-1041.
[17]
Qin YH, Wang L, Gao ZL, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo [J]. Sci Rep, 2016, 6(6): 21961.
[18]
Zhao LM, Jiang S, Hantash BM. Transforming growth factor beta 1 induces osteogenic differentiation of murine bone marrow stromal cells [J]. Tissue Eng Part A, 2010, 16(2): 725-733.
[19]
Luther G, Wagner ER, Zhu GH, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential [J]. Curr Gene Ther, 2011, 11(3): 229-240.
[20]
Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells [J]. Stem Cells Int, 2016: 3808674.
[21]
Cui YZ, Luan J, Li HY, et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression [J]. FEBS Lett, 2016, 590(1): 185-192.
[22]
Ekstrom K, Omar O, Graneli C, et al. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells [J]. PLoS One, 2013, 8(9): 75227.
[23]
Omar MO, Graneli C, Ekstrom K, et al. The stimulation of an osteogenic response by classical monocyte activation [J]. Biomaterials, 2011, 32(32): 8190-8204.
[24]
Egea V, Zahler S, Rieth N, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling [J]. Proc Natl Acad Sci U S A, 2012, 109(6): E309-E316.
[25]
Wei J, Li H, Wang S, et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2 [J]. Stem Cells Dev, 2014, 23(13): 1452-1463.
[26]
Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2 [J]. Proc Natl Acad Sci USA, 2011, 108(24): 9863-9868.
[27]
Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program [J]. Proc Natl Acad Sci U S A, 2008, 105(37): 13906-13911.
[28]
Xu JF, Yang GH, Pan XH, et al. Altered MicroRNA expression profile in exosomes during osteogenic differentiation of human bone Marrow-Derived mesenchymal stem cells [J]. PLoS One, 2014, 9(12): e114627.
[29]
Huang J, Zhao L, Xing LP, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation [J]. Stem Cells, 2010, 28(2): 357-364.
[30]
Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells [J]. FEBS Lett, 2014, 588(17): 2957-2963.
[31]
Qin Y, Sun R, Wu C, et al. Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis [J]. Int J Mol Sci, 2016, 17(5): 712.
[32]
Kim YJ, Bae SW, Yu SS, et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue [J]. J Bone Miner Res, 2009, 24(5): 816-825.
[33]
Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells [J]. J Biol Chem, 2012, 287(50): 42084-42092.
[34]
Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK [J]. J Bone Miner Res, 2014, 29(2): 338-347.
[35]
James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica (Cairo), 2013: 684736.
[36]
Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B [J]. J Bone Miner Res, 2013, 28(5): 1180-1190.
[37]
Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation [J]. Nat Med, 2013, 19(1): 93-100.
[38]
Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway [J]. RNA Biol, 2015, 12(3): 343-353.
[39]
渠海波,张朝,吴刚.骨质疏松的研究进展[J].包头医学院学报, 2013, 29(3): 119-121.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 郑永乐, 庞祖才, 陈家敏, 孙丙银. 骨碎补总黄酮抑制牵张成骨模型骨质疏松的作用研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 604-608.
[3] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[4] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[5] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[6] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[7] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[8] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
阅读次数
全文


摘要