切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (05) : 308 -311. doi: 10.3877/cma.j.issn.2096-0263.2018.05.010

所属专题: 文献

综述

骨组织细胞外泌体对骨代谢作用的研究现状
吴石磊1, 刘勇1,(), 邵增务1, 田青1   
  1. 1. 430074 武汉,华中科技大学同济医学院附属协和医院骨科
  • 收稿日期:2017-10-09 出版日期:2018-10-05
  • 通信作者: 刘勇
  • 基金资助:
    国家自然科学基金青年科学基金(30800654)

Research status of bone tissue-derived exosomes on bone metabolism

Shilei Wu1, Yong Liu1,(), Zengwu Shao1, Qing Tian1   

  1. 1. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2017-10-09 Published:2018-10-05
  • Corresponding author: Yong Liu
  • About author:
    Corresponding author: Liu Yong, Email:
引用本文:

吴石磊, 刘勇, 邵增务, 田青. 骨组织细胞外泌体对骨代谢作用的研究现状[J]. 中华老年骨科与康复电子杂志, 2018, 04(05): 308-311.

Shilei Wu, Yong Liu, Zengwu Shao, Qing Tian. Research status of bone tissue-derived exosomes on bone metabolism[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(05): 308-311.

骨质疏松症是老年人的常见病和多发病,骨组织来源细胞可分泌外泌体,包装和运载多种活性物质,如蛋白质、miRNAs、各种活性因子等,进行细胞间物质交换和信息交流,根据骨组织来源细胞外泌体和内容物的特点,利用其调节骨形成和骨吸收平衡的作用,甚至作为生物或基因治疗的载体,为老年骨质疏松症的防治提供全新的思路。

Osteoporosis is a common and frequently occurring disease in the elderly. Studies found that the bone derived cells can also secrete the exsomes packaging and delivering a variety of active substances, such as protein, miRNAs, various active factors, carrying out the exchange of material and information between cells. According to the characteristics and contents of bone-derived exosomes, they can be used to regulate bone formation and bone resorption balance, even as carrier of biological or gene therapy, this kind of research may provide a new idea for the prevention and treatment of osteoporosis in the elderly.

表1 四种骨组织细胞来源外泌体标记及包含物特点
[1]
North Ameirican Menopause Society. Estrogen and progestogen use in postmenopausal women: 2010 position statement of The North American Menopause [J]. Menopause, 2010, 17(2): 242-255.
[2]
Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 [J]. J Bone Miner Res, 2007, 22(3): 465-475.
[3]
Gehlbach SH, Avrunin JS, Puleo E, et al. Fracture risk and antiresorptive medication use in older women in the USA [J]. Osteoporos Int, 2007, 18(6): 805-810.
[4]
Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle [J]. Cancers (Basel), 2013, 5(4): 1522-1544.
[5]
Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
[6]
Deng LL, Wang YP, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.
[7]
Huynh N, Vonmoss L, Smith D, et al. Characterization of regulatory extracellular vesicles from osteoclasts [J]. J Dent Res, 2016, 95(6): 673-679.
[8]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. J Cell Biol, 2013, 200(4): 373-383.
[9]
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more [J]. Trends Cell Biol, 2009, 19(2): 43-51.
[10]
Runz S, Keller S, Rupp C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM [J]. Gynecol Oncol, 2007, 107(3): 563-571.
[11]
Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63 [J]. Exp Cell Res, 2009, 315(9): 1584-1592.
[12]
Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity [J]. Cell Discov, 2016, 2(2): 16015.
[13]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation [J]. Nat Commun, 2016, 7(7): 10872.
[14]
Deng L, Wang Y, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.
[15]
Antonyak MA, Li B, Boroughs LK, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 4852-4857.
[16]
Xie Y, Chen Y, Zhang L, et al. The roles of bone-derived exosomes and exosomal microRNAsin regulating bone remodeling [J]. J Cell Mol Med, 2017, 21(5): 1033-1041.
[17]
Qin YH, Wang L, Gao ZL, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo [J]. Sci Rep, 2016, 6(6): 21961.
[18]
Zhao LM, Jiang S, Hantash BM. Transforming growth factor beta 1 induces osteogenic differentiation of murine bone marrow stromal cells [J]. Tissue Eng Part A, 2010, 16(2): 725-733.
[19]
Luther G, Wagner ER, Zhu GH, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential [J]. Curr Gene Ther, 2011, 11(3): 229-240.
[20]
Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells [J]. Stem Cells Int, 2016: 3808674.
[21]
Cui YZ, Luan J, Li HY, et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression [J]. FEBS Lett, 2016, 590(1): 185-192.
[22]
Ekstrom K, Omar O, Graneli C, et al. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells [J]. PLoS One, 2013, 8(9): 75227.
[23]
Omar MO, Graneli C, Ekstrom K, et al. The stimulation of an osteogenic response by classical monocyte activation [J]. Biomaterials, 2011, 32(32): 8190-8204.
[24]
Egea V, Zahler S, Rieth N, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling [J]. Proc Natl Acad Sci U S A, 2012, 109(6): E309-E316.
[25]
Wei J, Li H, Wang S, et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2 [J]. Stem Cells Dev, 2014, 23(13): 1452-1463.
[26]
Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2 [J]. Proc Natl Acad Sci USA, 2011, 108(24): 9863-9868.
[27]
Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program [J]. Proc Natl Acad Sci U S A, 2008, 105(37): 13906-13911.
[28]
Xu JF, Yang GH, Pan XH, et al. Altered MicroRNA expression profile in exosomes during osteogenic differentiation of human bone Marrow-Derived mesenchymal stem cells [J]. PLoS One, 2014, 9(12): e114627.
[29]
Huang J, Zhao L, Xing LP, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation [J]. Stem Cells, 2010, 28(2): 357-364.
[30]
Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells [J]. FEBS Lett, 2014, 588(17): 2957-2963.
[31]
Qin Y, Sun R, Wu C, et al. Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis [J]. Int J Mol Sci, 2016, 17(5): 712.
[32]
Kim YJ, Bae SW, Yu SS, et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue [J]. J Bone Miner Res, 2009, 24(5): 816-825.
[33]
Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells [J]. J Biol Chem, 2012, 287(50): 42084-42092.
[34]
Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK [J]. J Bone Miner Res, 2014, 29(2): 338-347.
[35]
James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica (Cairo), 2013: 684736.
[36]
Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B [J]. J Bone Miner Res, 2013, 28(5): 1180-1190.
[37]
Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation [J]. Nat Med, 2013, 19(1): 93-100.
[38]
Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway [J]. RNA Biol, 2015, 12(3): 343-353.
[39]
渠海波,张朝,吴刚.骨质疏松的研究进展[J].包头医学院学报, 2013, 29(3): 119-121.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[8] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[9] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 张茜, 刘叶青, 康雪莹, 孙兵兵, 刘岩, 胡丽叶, 周亚茹. 血清铁蛋白与绝经后骨质疏松症的相关性分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(03): 166-171.
[14] 中华医学会骨科学分会, 邢军超, 毕龙, 陈林, 董世武, 高梁斌, 侯天勇, 侯志勇, 黄伟, 靳慧勇, 李岩, 李忠海, 刘鹏, 刘曦明, 罗飞, 马锋, 沈杰, 宋锦璘, 唐佩福, 吴新宝, 徐宝山, 许建中, 徐永清, 颜滨, 杨鹏, 叶青, 殷国勇, 于腾波, 曾建成, 张长青, 张英泽, 张泽华, 赵枫, 周跃, 朱芸, 邹俊. 自体骨髓富集骨修复技术临床应用专家共识(2023版)[J]. 中华卫生应急电子杂志, 2023, 09(03): 129-141.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要