切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (06) : 345 -350. doi: 10.3877/cma.j.issn.2096-0263.2025.06.004

基础研究

通过蛋白质性状位点分析揭示弥漫性特发性骨肥厚的潜在治疗靶点
李冠奇, 汤嘉俊, 刘杰灵, 王方敏, 丁质钰, 彭毅, 王卫国, 苗惊雷, 陈世杰, 李劲松()   
  1. 410013 中南大学湘雅三医院脊柱外科
  • 收稿日期:2023-10-25 出版日期:2025-12-05
  • 通信作者: 李劲松
  • 基金资助:
    国家自然科学基金面上项目(82273497)

Identification of potential therapeutic targets for diffuse idiopathic skeletal hyperostosis via protein quantitative trait locus analysis

Guanqi Li, Jiajun Tang, Jieling Liu, Fangmin Wang, Zhiyu Ding, Yi Peng, Weiguo Wang, Jinglei Miao, Shijie Chen, Jinsong Li()   

  1. Department of Spinal Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan410013, China
  • Received:2023-10-25 Published:2025-12-05
  • Corresponding author: Jinsong Li
引用本文:

李冠奇, 汤嘉俊, 刘杰灵, 王方敏, 丁质钰, 彭毅, 王卫国, 苗惊雷, 陈世杰, 李劲松. 通过蛋白质性状位点分析揭示弥漫性特发性骨肥厚的潜在治疗靶点[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 345-350.

Guanqi Li, Jiajun Tang, Jieling Liu, Fangmin Wang, Zhiyu Ding, Yi Peng, Weiguo Wang, Jinglei Miao, Shijie Chen, Jinsong Li. Identification of potential therapeutic targets for diffuse idiopathic skeletal hyperostosis via protein quantitative trait locus analysis[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(06): 345-350.

目的

蛋白质组是疾病治疗的主要来源靶点,本研究进行了全蛋白质组的孟德尔随机化分析,以鉴定候选蛋白质标记物和弥漫性特发性骨肥厚的治疗靶点。

方法

蛋白质定量性状基因位点(PQTL)源自七个关于血浆蛋白质组的全基因组关联研究(GWASS),并提取了4 853个循环蛋白标记的摘要级别数据。与弥漫性特发性骨肥厚的遗传关联是从UK BioBank(9 276病例和477 069个对照组)中获得的。进行全蛋白质组孟德尔随机化分析以及Steiger滤波分析,以验证候选蛋白的因果作用。

结果

遗传预测的两种蛋白CHAD和TMEM190与弥漫性特发性骨肥厚的风险有关。

结论

这项研究确定了两种与弥漫性特发性骨肥厚风险相关的蛋白质生物标志物,并为病因的发现和疾病治疗靶点提供了新的见解,以开发筛查弥漫性特发性骨肥厚的生物标志物和治疗药物。

Objective

The proteome represents a key source of therapeutic targets for complex diseases. In this study, we performed a proteome-wide Mendelian randomization (MR) analysis to identify potential protein biomarkers and therapeutic targets for diffuse idiopathic skeletal hyperostosis (DISH).

Methods

Protein quantitative trait loci (pQTL) data were obtained from seven genome-wide association studies (GWASs) on plasma proteomics, encompassing 4,853 circulating proteins. Summary-level genetic associations with DISH were derived from the UK Biobank (9,276 cases and 477,069 controls). Proteome-wide MR and Steiger filtering analyses were conducted to evaluate causal relationships between plasma proteins and DISH risk.

Results

Genetically predicted circulating levels of two proteins, CHAD and TMEM190, were found to be significantly associated with the risk of DISH.

Conclusions

This study identifies two plasma proteins associated with DISH susceptibility and provides novel insights into disease etiology and therapeutic targeting. These findings may contribute to the development of biomarkers and potential drugs for early screening and treatment of DISH.

图1 本研究的整体研究流程图。本研究整合7项高质量蛋白质组研究数据作为暴露数据来源(共覆盖10 000余名个体,涉及4 685个血浆蛋白),并利用英国生物银行(UK Biobank)公开的弥漫性特发性骨质增生症(DISH)病例对照队列的GWAS汇总统计数据作为结局变量,构建蛋白质组层面的孟德尔随机化(MR)分析框架。在严格的多重假设检验(Bonferroni校正,P<0.05/4 853)基础上,结合Steiger方向性检验,筛选出具备稳健因果效应的目标蛋白CHAD与TMEM190。随后,进一步基于CTDbase、SWISS-MODEL及PubChem等数据库开展分子对接实验,初步评估其与潜在干预药物的亲和性,为DISH治疗靶点的识别及药物开发提供基础支持
表1 七项蛋白质定量性状位点(pQTL)研究的基本信息
图2 蛋白质性状位点(pQTL)与弥漫性特发性骨肥厚(DISH)关联的孟德尔随机化分析火山图(未经Bonferroni校正) 图中展示了基于全蛋白质组孟德尔随机化分析结果绘制的火山图,共纳入4 685种循环蛋白。X轴表示因果效应估计值(Wald比值比logOR),Y轴为对应P值的负对数转换(-log10P)。红色点表示P值显著(P<0.05)且方向明确的蛋白,灰色点表示未达到显著性标准的蛋白。图中可见多个蛋白与DISH风险呈初步关联趋势,为后续因果验证与靶点筛选提供线索。本图用于展示未进行多重校正时的分析全貌,正式统计判断仍依赖Bonferroni校正后的筛选标准
图3 索拉非尼(Sorafenib)与阿霉素(Doxorubicin)在CHAD蛋白上的分子对接结构图。图中展示了两种小分子药物索拉非尼(上)与阿霉素(下)分别与CHAD蛋白的三维结构对接情况(均为中位数结合能对接预测可视化)。左侧为整体蛋白构象与小分子结合位点位置,右侧为局部放大图,突出药物与靶点关键氨基酸残基之间的结合关系。结果显示,两种药物均可稳定与CHAD结合,并通过氢键或疏水相互作用形成较强亲和力,提示其在调节CHAD功能、干预DISH发病中的潜在应用价值
表2 候选靶蛋白与小分子药物的分子对接结果
1
Le HV, Wick JB, Van BW, et al. Diffuse idiopathic skeletal hyperostosis of the spine:pathophysiology,diagnosis,and management [J]. J Am Acad Orthop Surg, 2021, 29(24): 1044-1051.
2
Zhou H, Gong J, Zhang Z, et al. Proteomic profiling of serum-derived extracellular vesicles in diffuse idiopathic skeletal hyperostosis patients [J]. J Proteome Res, 2025, 24(6): 2783-2790.
3
Littlejohn GO. Bone and entheseal targets for growth factors in diffuse idiopathic skeletal hyperostosis. Semin Arthritis Rheum, 2024, 68: 152532
4
Kato H, Ansh AJ, Lester ER, et al. Identification of ENPP1 haploinsufficiency in patients with diffuse idiopathic skeletal hyperostosis and Early-Onset osteoporosis [J]. J Bone Miner Res, 2022, 37(6): 1125-1135.
5
Kato H, Braddock DT, Ito N. Genetics of diffuse idiopathic skeletal hyperostosis and ossification of the spinal ligaments [J]. Curr Osteoporos Rep, 2023, 21(5): 552-566.
6
Sun BB, Maranville JC, Peters JE, et al. Genomic Atlas of the human plasma proteome [J]. Nature, 2018, 558(7708): 73-79.
7
Sethi A, Ruby JG, Veras MA, et al. Genetics implicates overactive osteogenesis in the development of diffuse idiopathic skeletal hyperostosis [J]. Nat Commun, 2023, 14(1): 2644.
8
Dunn OJ. Multiple comparisons among means [J]. J Am Stat Assoc, 1961, 56(293): 52-64.
9
Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1936, 8: 3-62
10
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome [J]. Elife, 2018, 7: e34408.
11
Burgess S, Small DS, Thompson SG. Instrumental variable estimators in Mendelian randomization [J]. Stat Methods Med Res, 2017, 26(5): 2333-2355.
12
Davis AP, Wiegers TC, Sciaky D, et al. Comparative toxicogenomics database's 20th anniversary: update 2025 [J]. Nucleic Acids Res, 2025, 53(D1): D1328-D1334.
13
Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes [J]. Nucleic Acids Res, 2018, 46(W1): W296-W303.
14
Kim S, Thiessen PA, Bolton EE, et al. PubChem in 2023:improved access to chemical data [J]. Nucleic Acids Res, 2023, 51(D1): D1388-D1395.
15
Wilson R, Nagano K, Holmes DF, et al. Chondroadherin is required for cartilage development and maintenance [J]. J Biolog Chem, 2015, 290(6): 3844-3853.
16
Wilson R, Nagano K, Holmes D F, et al. Chondroadherin is required for cartilage development and maintenance. J Biol Chem, 2015, 290(6): 3844-3853.
17
Yoon H, Park S, Lee J, et al. TMEM190 is a novel synaptic protein involved in neuronal signaling [J]. Mol Brain, 2021, 14(1): 130.
18
Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer [J]. Nat Rev Drug Discov, 2006, 5(10): 835-844.
19
Gewirtz DA. A critical evaluation of the mechanisms of action proposed for doxorubicin [J]. Biochem Pharmacol, 1999, 57(7): 727-741.
20
Liu Y, Zhu ST, Wang X, et al. MiR-200c regulates tumor growth and chemosensitivity to cisplatin in osteosarcoma by targeting AKT2 [J]. Sci Rep, 2017, 7(1): 13598.
21
Wang Y, Zhang T, Liu B, et al. Jinfukang,an extract of medicinal plants,inhibits tumor growth and induces apoptosis in non-small-cell lung cancer xenografts in mice [J]. J Ethnopharmacol, 2010, 127(1): 202-207.
22
Batista MA, Nia HT, Önnerfjord P, et al. Nanomechanical phenotype of chondroadherin-null murine articular cartilage [J]. Matrix Biol, 2014, 38: 84-90.
23
Paracuellos P, Kalamajski S, Bonna A, et al. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin [J]. Matrix Biology, 2017, 63: 106-116.
24
Haglund L, Tillgren V, Addis L, et al. Identification and characterization of the integrin α2β1 binding motif in chondroadherin mediating cell attachment [J]. J Biol Chem, 2011, 286(5): 3925-3934.
25
Lindberg ED, Kaya S, Jamali AA, et al. Effect of passaging on bovine chondrocyte gene expression and engineered cartilage production [J]. Tissue Eng Part A, 2024, 30(17/18): 512-524.
[1] 刘新桃, 宋丽娟, 梁国骏, 杨逸禧, 陈柳. 脑沟形态特征与骨坏死风险的孟德尔随机化分析[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 580-585.
[2] 陈柳, 梁国骏, 陈玉书, 刘新桃. 孟德尔随机化研究职业性严寒暴露与冻结肩[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 521-527.
[3] 史彦纪, 张磊, 雷宁波, 常瑞龙, 左宁, 顾玉彪. 孟德尔随机化探讨免疫性疾病与人工关节再手术的关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 193-199.
[4] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[5] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[6] 王思卓, 段晓鑫, 陈隆, 董胜利. 肠道微生物群、血液代谢物和胃癌的因果关系:东亚人群中介孟德尔随机化研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 163-168.
[7] 何永庆, 苍雪静, 姜亚志. 肠道微球菌科通过免疫介导与乳腺癌发生关联的孟德尔随机化研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 193-198.
[8] 孟泓宇, 戴锦辉, 胡嘉金, 李光辉. 炎性细胞因子与胰腺导管腺癌的因果关系:一项孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 948-955.
[9] 张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰. 生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 761-769.
[10] 王继才, 张广权, 吴芬芳, 史宪杰. 孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 601-608.
[11] 牛斌, 佘林璐, 翁康强, 李沪, 吴翔, 戴英波. 辛伐他汀预防胆石症的孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 60-67.
[12] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[13] 邓绮玲, 庄杰兰, 董家铭, 苏镜. 基于生物信息学分析原发性痛风性关节炎与高尿酸血症的关键基因及相关通路[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 97-105.
[14] 高训锋, 许晓露, 张金辉, 蔡理全, 张恒, 邰沁文. 胃食管反流病与肝胆胰系统疾病的因果关系:一项孟德尔随机化研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 143-152.
[15] 顾家宁, 韩国达, 闫昊然, 李正旗, 王亮. 体质量指数、2 型糖尿病、生活方式因素与胃食管反流病的关系:一项双样本孟德尔随机化研究[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 53-61.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?