切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (06) : 337 -344. doi: 10.3877/cma.j.issn.2096-0263.2025.06.003

膝关节

全膝关节置换术后慢性疼痛影响因素的多种模型预测性能比较
荣锦1, 骆明星2, 王禹2, 刘婷婷2, 张宏斌2,()   
  1. 1063000 唐山市第二医院手术室
    2063000 唐山市第二医院创伤骨科
  • 收稿日期:2025-01-16 出版日期:2025-12-05
  • 通信作者: 张宏斌
  • 基金资助:
    河北省医学科学研究重点课题计划项目(20201451)

Comparison of predictive performance of multiple models of factors affecting chronic pain after total knee arthroplasty

Jin Rong1, Mingxing Luo2, Yu Wang2, Tingting Liu2, Hongbin Zhang2,()   

  1. 1Department of Operating Room, The Second Hospital of Tangshan City, Tangshan 063000, China
    2Department of Traumatic Orthopedics, The Second Hospital of Tangshan City, Tangshan 063000, China
  • Received:2025-01-16 Published:2025-12-05
  • Corresponding author: Hongbin Zhang
引用本文:

荣锦, 骆明星, 王禹, 刘婷婷, 张宏斌. 全膝关节置换术后慢性疼痛影响因素的多种模型预测性能比较[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 337-344.

Jin Rong, Mingxing Luo, Yu Wang, Tingting Liu, Hongbin Zhang. Comparison of predictive performance of multiple models of factors affecting chronic pain after total knee arthroplasty[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(06): 337-344.

目的

探讨关于全膝关节置换术(TKA)后患者发生慢性疼痛的影响因素,比较不同机器学习模型的预测性能。

方法

回顾性选取2021年10月至2024年5月于本院接受TKA治疗的膝骨性关节炎患者278例,根据留出法按7:3的比例随机将其分为训练集(195例)和测试集(83例)。术前采用疼痛数字评定量表(NRS)评估患者术前、出院时疼痛情况;采用焦虑抑郁量表(HADS)评估患者情绪状况。训练集通过采用5折交叉验证法获取最优超参数,构建逻辑回归(LR)、随机森林(RF)、极端梯度提升(XGBoost)、支持向量机(SVM)模型;验证集用于内部验证。以精确率、灵敏度、特异度、召回率、F1值和曲线下面积(AUC)等评估模型的预测性能,对比出性能最优的模型,使用Shapley加性解释(SHAP)算法评估重要风险变量,分析各临床特征对模型的影响。

结果

278例接受TKA治疗的膝骨性关节炎患者中发生术后慢性疼痛的有87例(31.29%)。与无疼痛组相比,训练集中疼痛组患者合并糖尿病、术后发生下肢静脉血栓占比、术前HADS评分、术前NRS评分、术后CRP水平均显著较高(P<0.05),两组在年龄、性别、身体质量指数(BMI)、合并高血压、冠心病、病程、ASA分级、术前膝关节压痛、手术部位、手术时间、住院时间、出院时NRS评分方面比较无明显差异(P>0.05);经对比发现,LR、RF、SVM、XGBoost模型的AUC分别为0.725、0.945、0.780、0.884,均大于0.7,其中RF模型的AUC和精确率均最大,提示RF模型的预测性能优于其他三种模型;在最优模型中利用SHAP算法发现,术后CRP、术前HADS、术前NRS评分、术后下肢静脉血栓、合并糖尿病为患者TKA术后慢性疼痛的重要影响因素。

结论

基于机器学习算法构建的TKA术后慢性疼痛的预测模型均显示出良好的预测性能,其中RF模型综合预测效能最优,其风险因素对于临床防治慢性疼痛具有重要指导意义。

Objective

To explore the machine learning model of chronic pain after total knee arthroplasty (TKA) and analyze its influencing factors.

Methods

278 patients with knee osteoarthritis who received TKA in our hospital from October 2021 to May 2024 were selected and randomly divided into training set (195 cases) and test set (83 cases) according to the ratio of 7:3. The pain Numerical Rating Scale (NRS) was used to evaluate the pain before surgery and at discharge. The anxiety and depression Scale (HADS) was used to evaluate the emotional status of the patients. The optimal hyperparameters of the training set were obtained by using the 5-fold cross-validation method, and logistic regression (LR), random forest (RF), extreme gradient Lift (XGBoost) and support vector machine (SVM) models were constructed. Validation sets are used for internal validation. Accuracy, sensitivity, specificity, recall rate, F1 value and area under the curve (AUC) were used to evaluate the predictive performance of the models, and the models with the best performance were compared. Shapley additive interpretation (SHAP) algorithm was used to evaluate important risk variables, and the influence of clinical characteristics on the models was analyzed.

Results

Among 278 patients with knee osteoarthritis treated with TKA, 87 case had chronic pain after surgery (31.29%). Compared with the pain-free group, the patients in the training intensive pain group with diabetes mellitus, the proportion of postoperative thrombosis in lower extremity vein, preoperative HADS score, preoperative NRS score and postoperative CRP level were significantly higher (P<0.05). There were no significant differences between the two groups in terms of age, gender, body mass index (BMI), comorbidities of hypertension, coronary heart disease, disease duration, ASA grading, preoperative knee joint tenderness, surgical site, surgical time, length of hospital stay, and NRS score at discharge (P>0.05). The comparison showed that the AUC of LR, RF, SVM and XGBoost models were 0.725, 0.945, 0.780 and 0.884, respectively, all greater than 0.7, and the AUC and accuracy of RF model were the largest, suggesting that the prediction performance of RF model was better than the other three models. In the optimal model, SHAP algorithm was used to find that postoperative CRP, preoperative HADS, preoperative NRS score, postoperative venous thrombosis of lower extremity, and diabetes mellitus were important factors affecting chronic pain after TKA.

Conclusion

All prediction models of chronic pain after TKA based on machine learning algorithm show good prediction performance, among which RF model has the best comprehensive prediction efficiency, and its risk factors have important guiding significance for clinical prevention and treatment of chronic pain.

表1 训练集与测试集患者临床资料比较
表2 训练集中疼痛组与无疼痛组患者临床资料比较
参数 疼痛组(n=59) 无疼痛组(n=136) t/χ2 P
年龄(岁,±s 67.95±7.97 68.16±8.54 0.161 0.871
性别[例(%)]     1.264 0.261
16(27.12) 27(19.85)    
43(72.88) 109(80.15)    
BMI(kg/m2±s 23.73±2.11 23.52±1.59 0.764 0.446
合并疾病[例(%)]        
高血压 23(38.98) 41(30.15) 1.457 0.227
糖尿病 19(32.20) 25(18.38) 4.499 0.034
冠心病 14(23.73) 20(14.71) 2.327 0.127
病程[例(%)]     1.219 0.270
<5年 24(40.68) 67(49.26)    
≥5年 35(59.32) 69(50.74)    
ASA分级[例(%)]     0.699 0.403
Ⅰ级 20(33.90) 38(27.94)    
Ⅱ级 39(66.10) 98(72.06)    
术前HADS评分(分,±s 11.51±2.18 8.36±1.63 11.146 <0.001
术前NRS评分(分,±s 5.25±1.15 4.14±0.82 7.644 <0.001
术前膝关节压痛[例(%)]     0.487 0.485
34(57.63) 71(52.21)    
25(42.37) 65(47.79)    
手术部位[例(%)]     0.420 0.517
左侧 29(49.15) 60(44.12)    
右侧 30(50.85) 76(55.88)    
手术时间(min,±s 22.31±4.09 24.06±4.88 1.727 0.086
住院时间(d,±s 10.25±2.04 9.73±1.87 1.738 0.084
术后CRP(mg/L,±s 22.81±4.69 15.16±2.78 14.157 <0.001
术后发生下肢静脉血栓[例(%)]     4.690 0.030
17(28.81) 21(15.44)    
42(71.19) 115(84.56)    
出院时NRS评分(分,±s 3.67±0.75 3.36±0.69 1.901 0.059
图3 SHAP特征指标分布情况
表3 四种模型的预测效能比较
1
Ramos MS, Pasqualini I, Surace PA, et al. Arthrofibrosis After Total Knee Arthroplasty: A Critical Analysis Review [J]. JBJS Rev, 2023, 11(12):e23.
2
Gil-González S, Barja-Rodríguez RA, López-Pujol A, et al. Continuous passive motion not affect the knee motion and the surgical wound aspect after total knee arthroplasty [J]. J Orthop Surg Res, 2022, 17(1):25.
3
Larsen JB, Skou ST, Laursen M, et al. Exercise and Pain Neuroscience Education for Patients With Chronic Pain After Total Knee Arthroplasty: A Randomized Clinical Trial [J]. JAMA Netw Open, 2024, 7(5):e2412179.
4
Li J, Guan T, Zhai Y, et al. Risk factors of chronic postoperative pain after total knee arthroplasty: a systematic review [J]. J Orthop Surg Res, 2024, 19(1):320.
5
Sa R, Yang T, Zhang Z, Guan F. Random Forest for Predicting Treatment Response to Radioiodine and Thyrotropin Suppression Therapy in Patients With Differentiated Thyroid Cancer But Without Structural Disease [J]. Oncologist, 2024, 29(1):e68-e80.
6
Xiang Y, Li S, Song M, et al. KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients [J]. BMC Med Imaging, 2023, 23(1):210.
7
Deberneh HM, Kim I. Prediction of Type 2 Diabetes Based on Machine Learning Algorithm [J]. Int J Environ Res Public Health, 2021, 18(6):3317.
8
中华医学会骨科学分会关节外科学组,中国医师协会骨科医师分会骨关节炎学组,国家老年疾病临床医学研究中心(湘雅医院),等.中国骨关节炎诊疗指南(2021年版)[J].中华骨科杂志, 2021, 41(18):1291-1314.
9
Stjernberg-Salmela S, Karjalainen T, Juurakko J, et al. Minimal important difference and patient acceptable symptom state for the Numerical Rating Scale (NRS) for pain and the Patient-Rated Wrist/Hand Evaluation (PRWHE) for patients with osteoarthritis at the base of thumb [J]. BMC Med Res Methodol, 2022, 22(1):127.
10
Sivertsen HE, Helvik AS, Gjøra L, et al. Psychometric validation of the Hospital Anxiety and Depression Scale (HADS) in community-dwelling older adults [J]. BMC Psychiatry, 2023, 23(1):903.
11
Tang S, Jin Y, Hou Y, et al. Predictors of Chronic Pain in Elderly Patients Undergoing Total Knee and Hip Arthroplasty: A Prospective Observational Study [J]. J Arthroplasty, 2023, 38(9):1693-1699.
12
Pryce R, Langan E, Tector K, et al. Patients' experiences following total knee arthroplasty: a qualitative evidence synthesis [J]. Disabil Rehabil, 2024, 46(2):214-231.
13
Luo D, Fan Z, Yin W. Chronic post-surgical pain after total knee arthroplasty: a narrative review [J]. Perioper Med (Lond), 2024, 13(1):108.
14
Luo M, Cao Q, Wang D, et al. The impact of diabetes on postoperative outcomes following spine surgery: A meta-analysis of 40 cohort studies with 2.9 million participants [J]. Int J Surg, 2022, 104:106789.
15
Plotnik AN, Haber Z, Kee S. Early Thrombus Removal for Acute Lower Extremity Deep Vein Thrombosis: Update on Inclusion, Technical Aspects, and Postprocedural Management [J]. Cardiovasc Intervent Radiol, 2024, 47(12):1595-1604.
16
Terradas-Monllor M, Ruiz MA, Ochandorena-Acha M. Postoperative Psychological Predictors for Chronic Postsurgical Pain After a Knee Arthroplasty: A Prospective Observational Study [J]. Phys Ther, 2024, 104(1):pzad141.
17
Springborg AH, Visby L, Kehlet H, et al. Psychological predictors of acute postoperative pain after total knee and hip arthroplasty: A systematic review [J]. Acta Anaesthesiol Scand, 2023, 67(10):1322-1337.
18
Skrejborg P, Petersen KK, Kold S, et al. Patients With High Chronic Postoperative Knee Pain 5 Years After Total Knee Replacement Demonstrate Low-grad Inflammation, Impairment of Function, and High Levels of Pain Catastrophizing [J]. Clin J Pain, 2021, 37(3):161-167.
19
Jacobs PG, Herrero P, Facchinetti A, et al. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities [J]. IEEE Rev Biomed Eng, 2024, 17:19-41.
20
Bani Hani SH, Ahmad MM. Machine-learning Algorithms for Ischemic Heart Disease Prediction: A Systematic Review [J]. Curr Cardiol Rev, 2023, 19(1):e090622205797.
21
Jin Y, Lan A, Dai Y, et al. Development and testing of a random forest-based machine learning model for predicting events among breast cancer patients with a poor response to neoadjuvant chemotherapy [J]. Eur J Med Res, 2023, 28(1):394.
22
Li J, Liu S, Hu Y, et al. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study [J]. J Med Internet Res, 2022, 24(8):e38082.
[1] 李博, 包金全, 乔成钢, 白毅, 聂继平, 张立茉, 赵文强. 全膝关节置换术后慢性疼痛的非手术相关危险因素[J/OL]. 中华关节外科杂志(电子版), 2025, 19(05): 615-621.
[2] 丁志丹, 杨巧运, 涂豪杰. 断指再植术后患者重返工作自我效能现状及影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(06): 519-524.
[3] 叶子悟, 周燕, 祖木来提·艾尔肯, 刘娜, 廖贵清, 邱小玲, 周震, 努尔比亚·阿不都西库. 新疆喀什市3 ~ 5岁儿童乳牙龋纵向变化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 393-399.
[4] 杨雯林, 吴元魁. 影像组学在胰腺神经内分泌瘤诊疗中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 426-432.
[5] 李玉志, 叶春伟, 杨斌, 杨德林. 机器人辅助下前列腺癌根治术后尿控影响因素的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 658-662.
[6] 高红, 潘冬青, 陈凤, 张林香, 苗素琴, 韩坤秀, 曲乐, 闫萍. 胸腔镜支气管肺癌肺段切除术后中重度急性疼痛风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 732-736.
[7] 贾贝丽, 冯雅琳, 林苏杰, 刘婧, 张雪丽, 周亚菲. 肺癌患者化疗期间院内肺部感染临床特征及其影响因素[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 742-746.
[8] 闫学丽, 孔德莹, 胡颖辉, 向俊西. 原位肝移植术后即时并发症发生情况及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 894-901.
[9] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[10] 李恺, 敖强国, 陶亚茹, 李青霖. 脓毒症相关急性肾损伤患者临床特点及90天预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 248-253.
[11] 孙瑜, 张爱华. 子痫前期患者肾脏远期预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 254-263.
[12] 张客松, 侯卫坤, 宇文星, 鲁超. 氨甲环酸和氨基己酸在全膝关节置换术围手术期止血效果和药物安全性对比[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 321-328.
[13] 郑富文, 马阳, 唐金烁, 彭亚臣, 左建林. 导航TKA术后引流放置与否对患者预后影响:一项队列研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 329-336.
[14] 郑雨竹, 嵇灵, 章阳, 宋妮娜. 基于中医证型的肛肠手术后慢性疼痛风险预测模型构建[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 642-648.
[15] 李姁, 冯中秋. HBV相关原发性肝癌患者经导管动脉化疗栓塞术后严重腹痛预测模型的构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 480-485.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?