| 1 |
Ramos MS, Pasqualini I, Surace PA, et al. Arthrofibrosis After Total Knee Arthroplasty: A Critical Analysis Review [J]. JBJS Rev, 2023, 11(12):e23.
|
| 2 |
Gil-González S, Barja-Rodríguez RA, López-Pujol A, et al. Continuous passive motion not affect the knee motion and the surgical wound aspect after total knee arthroplasty [J]. J Orthop Surg Res, 2022, 17(1):25.
|
| 3 |
Larsen JB, Skou ST, Laursen M, et al. Exercise and Pain Neuroscience Education for Patients With Chronic Pain After Total Knee Arthroplasty: A Randomized Clinical Trial [J]. JAMA Netw Open, 2024, 7(5):e2412179.
|
| 4 |
Li J, Guan T, Zhai Y, et al. Risk factors of chronic postoperative pain after total knee arthroplasty: a systematic review [J]. J Orthop Surg Res, 2024, 19(1):320.
|
| 5 |
Sa R, Yang T, Zhang Z, Guan F. Random Forest for Predicting Treatment Response to Radioiodine and Thyrotropin Suppression Therapy in Patients With Differentiated Thyroid Cancer But Without Structural Disease [J]. Oncologist, 2024, 29(1):e68-e80.
|
| 6 |
Xiang Y, Li S, Song M, et al. KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients [J]. BMC Med Imaging, 2023, 23(1):210.
|
| 7 |
Deberneh HM, Kim I. Prediction of Type 2 Diabetes Based on Machine Learning Algorithm [J]. Int J Environ Res Public Health, 2021, 18(6):3317.
|
| 8 |
中华医学会骨科学分会关节外科学组,中国医师协会骨科医师分会骨关节炎学组,国家老年疾病临床医学研究中心(湘雅医院),等.中国骨关节炎诊疗指南(2021年版)[J].中华骨科杂志, 2021, 41(18):1291-1314.
|
| 9 |
Stjernberg-Salmela S, Karjalainen T, Juurakko J, et al. Minimal important difference and patient acceptable symptom state for the Numerical Rating Scale (NRS) for pain and the Patient-Rated Wrist/Hand Evaluation (PRWHE) for patients with osteoarthritis at the base of thumb [J]. BMC Med Res Methodol, 2022, 22(1):127.
|
| 10 |
Sivertsen HE, Helvik AS, Gjøra L, et al. Psychometric validation of the Hospital Anxiety and Depression Scale (HADS) in community-dwelling older adults [J]. BMC Psychiatry, 2023, 23(1):903.
|
| 11 |
Tang S, Jin Y, Hou Y, et al. Predictors of Chronic Pain in Elderly Patients Undergoing Total Knee and Hip Arthroplasty: A Prospective Observational Study [J]. J Arthroplasty, 2023, 38(9):1693-1699.
|
| 12 |
Pryce R, Langan E, Tector K, et al. Patients' experiences following total knee arthroplasty: a qualitative evidence synthesis [J]. Disabil Rehabil, 2024, 46(2):214-231.
|
| 13 |
Luo D, Fan Z, Yin W. Chronic post-surgical pain after total knee arthroplasty: a narrative review [J]. Perioper Med (Lond), 2024, 13(1):108.
|
| 14 |
Luo M, Cao Q, Wang D, et al. The impact of diabetes on postoperative outcomes following spine surgery: A meta-analysis of 40 cohort studies with 2.9 million participants [J]. Int J Surg, 2022, 104:106789.
|
| 15 |
Plotnik AN, Haber Z, Kee S. Early Thrombus Removal for Acute Lower Extremity Deep Vein Thrombosis: Update on Inclusion, Technical Aspects, and Postprocedural Management [J]. Cardiovasc Intervent Radiol, 2024, 47(12):1595-1604.
|
| 16 |
Terradas-Monllor M, Ruiz MA, Ochandorena-Acha M. Postoperative Psychological Predictors for Chronic Postsurgical Pain After a Knee Arthroplasty: A Prospective Observational Study [J]. Phys Ther, 2024, 104(1):pzad141.
|
| 17 |
Springborg AH, Visby L, Kehlet H, et al. Psychological predictors of acute postoperative pain after total knee and hip arthroplasty: A systematic review [J]. Acta Anaesthesiol Scand, 2023, 67(10):1322-1337.
|
| 18 |
Skrejborg P, Petersen KK, Kold S, et al. Patients With High Chronic Postoperative Knee Pain 5 Years After Total Knee Replacement Demonstrate Low-grad Inflammation, Impairment of Function, and High Levels of Pain Catastrophizing [J]. Clin J Pain, 2021, 37(3):161-167.
|
| 19 |
Jacobs PG, Herrero P, Facchinetti A, et al. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities [J]. IEEE Rev Biomed Eng, 2024, 17:19-41.
|
| 20 |
Bani Hani SH, Ahmad MM. Machine-learning Algorithms for Ischemic Heart Disease Prediction: A Systematic Review [J]. Curr Cardiol Rev, 2023, 19(1):e090622205797.
|
| 21 |
Jin Y, Lan A, Dai Y, et al. Development and testing of a random forest-based machine learning model for predicting events among breast cancer patients with a poor response to neoadjuvant chemotherapy [J]. Eur J Med Res, 2023, 28(1):394.
|
| 22 |
Li J, Liu S, Hu Y, et al. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study [J]. J Med Internet Res, 2022, 24(8):e38082.
|