1 |
Howell M, Liao Q, Gee CW. Surgical management of osteochondral defects of the knee: an educational review [J]. Curr Rev Musculoskelet Med, 2021, 14(1): 60-66.
|
2 |
de Windt Tommy S, Vonk Lucienne A, Brittberg Mats, et al. Treatment and Prevention of (Early) Osteoarthritis Using Articular Cartilage Repair-Fact or Fiction? A Systematic Review [J]. Cartilage, 2013, 4(3 Suppl): 5-12.
|
3 |
杨星,周明旺,王晓萍,等.干细胞修复软骨损伤治疗膝骨关节炎的机制与临床研究进展[J].中国骨质疏松杂志, 2024, 30(10): 1466-1471.
|
4 |
Olson SA, Brown TD, Athanasiou KA, et al. Applied biomechanics in articular injuries: perspectives in the basic investigation of articular injuries and clinical application [J]. Instr Course Lect, 2011, 60: 583-94.
|
5 |
中国膝关节软骨损伤修复重建指南制订工作组,中国医师协会运动医学医师分会,代岭辉,等.膝关节软骨损伤修复重建指南(2021) [J].中国运动医学杂志, 2022, 41(4): 249-259.
|
6 |
Altschuler, N, Zaslav KR, et al. Aragonite-Based scaffold versus microfracture and debridement for the treatment of knee chondral and osteochondral lesions:results of a multicenter randomized controlled trial [J]. Am J Sports Med, 2023, 51(4): 957-967.
|
7 |
和文宝,杨云峰.骨软骨缺损治疗的现状及研究进展[J].中华骨与关节外科杂志, 2023, 16(12): 1145-1152.
|
8 |
Ren, F, Chen X, et al. Autologous osteochondral transplantation for large osteochondral lesions of the talus is a viable option in an athletic population:letter to the editor [J]. Am J Sports Med, 2020, 48(11): Np47.
|
9 |
侯建雷,刘鹏卫,姜川,等.自体软骨细胞移植技术治疗关节软骨退变[J].科技导报, 2024, 42(22): 15-22.
|
10 |
Manjunath, K A, Fried JW, et al. Matrix-Induced autologous chondrocyte implantation versus autologous chondrocyte implantation of the knee a retrospective comparison [J]. Bull Hosp Jt Dis, 2024, 82(2): 118-123.
|
11 |
Kon, E, Conte P, et al. Report on evolving indications,techniques,and outcome of novel and innovative surgical procedure-Agili C® [J]. Curr Rev Musculoskelet Med, 2025, 18(4): 124-132.
|
12 |
Ghisa C, Zaslav KR. Novel treatment options for knee cartilage defects in 2023 [J]. Sports Med Arthrosc Rev, 2024, 32(2): 113-118.
|
13 |
Bohndorf, K, Osteochondritis. Dissecans:a review and new MRI classification [J]. Eur Radiol, 1998, 8(1): 103-112.
|
14 |
Carballo, B C, Nakagawa Y, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3): 413-425.
|
15 |
Chen, S, Fu P, et al. Meniscus,articular cartilage and nucleus pulposus:a comparative review of cartilage-like tissues in anatomy,development and function [J]. Cell Tissue Res, 2017, 370(1): 53-70.
|
16 |
Moradi M, Parvizpour F, Arabpour Z, et al. Articular cartilage injury; current status and future direction [J]. Curr Stem Cell Res Ther, 2024, 19(5): 653-661.
|
17 |
Goldring, R S. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis [J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
|
18 |
Kazemi M, Williams JL. Properties of Cartilage-Subchondral bone junctions: a narrative review with specific focus on the growth plate [J]. Cartilage, 2021, 13(2_suppl): 16S-33S.
|
19 |
Yuan, L X, Meng HY, et al. Bone-cartilage interface crosstalk in osteoarthritis:potential pathways and future therapeutic strategies [J]. Osteoarthritis Cartilage, 2014, 22(8): 1077-1089.
|
20 |
Lepage, M SI, Robson N, et al. Beyond cartilage repair:the role of the osteochondral unit in joint health and disease [J]. Tissue Eng Part B Rev, 2019, 25(2): 114-125.
|
21 |
Blumenkrantz, G, Lindsey CT, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee [J]. Osteoarthritis Cartilage, 2004, 12(12): 997-1005.
|
22 |
Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis [J]. Nat Rev Rheumatol, 2012, 8(7): 390-398.
|
23 |
Chubinskaya, S, Matteo BD, et al. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model [J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6): 1953-1964.
|
24 |
Ko, K I, Lee SJ, et al. In situ tissue regeneration through host stem cell recruitment [J]. Exp Mol Med, 2013, 45(11): e57.
|
25 |
Sofu, H, Camurcu Y, et al. Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint [J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(3): 773-781.
|
26 |
Kon, E, Filardo G, et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model [J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1452-1464.
|
27 |
Matta Csaba, Szűcs-Somogyi Csilla, Kon Elizaveta, et al. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold [J]. Differentiation, 2019, 107: 24-34.
|
28 |
Kon Elizaveta, Filardo Giuseppe, Shani Jonathan, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model [J]. J Orthop Surg Res, 2015, 10: 81.
|
29 |
Van Genechten W, Vuylsteke K, Struijk C, et al. Joint surface lesions in the knee treated with an acellular Aragonite-Based scaffold: a 3-Year Follow-Up case series [J]. Cartilage, 2021, 13(1_suppl): 1217S-1227S.
|
30 |
Kon, E, Matteo BD, et al. Aragonite-Based scaffold for the treatment of joint surface lesions in mild to moderate osteoarthritic knees:results of a 2-Year multicenter prospective study [J]. Am J Sports Med, 2021, 49(3): 588-598.
|
31 |
Conte, P, Anzillotti G, et al. Differential analysis of the impact of lesions'location on clinical and radiological outcomes after the implantation of a novel aragonite-based scaffold to treat knee cartilage defects [J]. Int Orthop, 2024, 48(12): 3117-3126.
|
32 |
Caro D, F, Vuylsteke K, et al. Acellular Aragonite-Based scaffold for the treatment of joint surface lesions of the knee: a minimum 5-Year Follow-Up study [J]. Cartilage, 2024, 15(4): 399-406.
|
33 |
Filardo Giuseppe, Andriolo Luca, Angele Peter, et al. Scaffolds for Knee Chondral and Osteochondral Defects: Indications for Different Clinical Scenarios. A Consensus Statement [J]. Cartilage, 2021, 13(1_suppl): 1036s-1046s.
|
34 |
Kon Elizaveta, Robinson Dror, Verdonk Peter, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments [J]. Injury, 2016, 47 Suppl 6: S27-s32.
|