切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 315 -320. doi: 10.3877/cma.j.issn.2096-0263.2025.05.008

综述

Agili-C®治疗膝关节骨软骨损伤的研究进展
李浩楠, 左建林, 徐琪博, 张栋捷, 李玮峰, 宗辰旭, 肖建林()   
  1. 130033 长春,吉林大学中日联谊医院关节科
  • 收稿日期:2025-04-29 出版日期:2025-10-05
  • 通信作者: 肖建林
  • 基金资助:
    吉林省科技发展计划项目(No.20230203089SF); 国家自然科学基金项目(No.82472620); 吉林省发改委项目(No.2023C039-3); 吉林省卫生科研人才专项项目(No.2023SCZ69)

Research progress on agili-C® for the treatment of knee osteochondral defects

Haonan Li, Jianlin Zuo, Qibo Xu, Dongjie Zhang, Weifeng Li, Chenxu Zong, Jianlin Xiao()   

  1. Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
  • Received:2025-04-29 Published:2025-10-05
  • Corresponding author: Jianlin Xiao
引用本文:

李浩楠, 左建林, 徐琪博, 张栋捷, 李玮峰, 宗辰旭, 肖建林. Agili-C®治疗膝关节骨软骨损伤的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 315-320.

Haonan Li, Jianlin Zuo, Qibo Xu, Dongjie Zhang, Weifeng Li, Chenxu Zong, Jianlin Xiao. Research progress on agili-C® for the treatment of knee osteochondral defects[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(05): 315-320.

骨软骨缺损(OCD)是骨科的常见疾病之一,由于其复杂的解剖结构和损伤后难以恢复的特点对患者的生活质量造成了严重的影响。现有的治疗方法(如关节镜手术、微骨折术、骨软骨自体移植、骨软骨异体移植和再生治疗)虽有效果但均具有一定的局限性。为了解决这种棘手的临床问题,实现损伤部位骨软骨单元层次上的完全再生,一种双相多孔、生物相容性和可生物降解的新型文石基支架—Agili-C®逐步进入大家视野。本文从OCD的解剖学特点出发,探讨了Agili-C®的微结构及修复OCD的机制,回顾了临床前和临床研究,介绍其适应证和手术技术,以期为Agili-C®治疗膝关节OCD的研究进展提供更多的理论依据和实践指导。此外,本文正视以往临床试验中的问题和不足之处,持续评估其治疗效果的长期性。

Osteochondral defect (OCD) represent a prevalent orthopedic condition that significantly impacts patients' quality of life due to the complex anatomical structure and poor intrinsic healing capacity of the affected tissue. While current treatment modalities (including arthroscopic surgery, microfracture, osteochondral autograft/allograft transplantation, and regenerative therapies) demonstrate varying efficacy, all present inherent limitations. To address this challenging clinical problem and achieve complete regeneration of the osteochondral unit, a novel biphasic, porous, biocompatible and biodegradable aragonite-based scaffold—Agili-C®—has emerged as a promising solution.This review examines the anatomical characteristics of OCD and elucidates the microstructure of Agili-C® along with its mechanism for OCD repair. We evaluate preclinical and clinical studies, detail its indications and surgical techniques, aiming to provide both theoretical foundation and practical guidance for Agili-C® application in knee OCD management. Furthermore, this article critically addresses limitations identified in previous clinical trials and emphasizes the need for ongoing assessment of long-term therapeutic outcomes.

表1 国际软骨修复协会软骨损伤分期
1
Howell M, Liao Q, Gee CW. Surgical management of osteochondral defects of the knee: an educational review [J]. Curr Rev Musculoskelet Med, 2021, 14(1): 60-66.
2
de Windt Tommy S, Vonk Lucienne A, Brittberg Mats, et al. Treatment and Prevention of (Early) Osteoarthritis Using Articular Cartilage Repair-Fact or Fiction? A Systematic Review [J]. Cartilage, 2013, 4(3 Suppl): 5-12.
3
杨星,周明旺,王晓萍,等.干细胞修复软骨损伤治疗膝骨关节炎的机制与临床研究进展[J].中国骨质疏松杂志, 2024, 30(10): 1466-1471.
4
Olson SA, Brown TD, Athanasiou KA, et al. Applied biomechanics in articular injuries: perspectives in the basic investigation of articular injuries and clinical application [J]. Instr Course Lect, 2011, 60: 583-94.
5
中国膝关节软骨损伤修复重建指南制订工作组,中国医师协会运动医学医师分会,代岭辉,等.膝关节软骨损伤修复重建指南(2021) [J].中国运动医学杂志, 2022, 41(4): 249-259.
6
Altschuler, N, Zaslav KR, et al. Aragonite-Based scaffold versus microfracture and debridement for the treatment of knee chondral and osteochondral lesions:results of a multicenter randomized controlled trial [J]. Am J Sports Med, 2023, 51(4): 957-967.
7
和文宝,杨云峰.骨软骨缺损治疗的现状及研究进展[J].中华骨与关节外科杂志, 2023, 16(12): 1145-1152.
8
Ren, F, Chen X, et al. Autologous osteochondral transplantation for large osteochondral lesions of the talus is a viable option in an athletic population:letter to the editor [J]. Am J Sports Med, 2020, 48(11): Np47.
9
侯建雷,刘鹏卫,姜川,等.自体软骨细胞移植技术治疗关节软骨退变[J].科技导报, 2024, 42(22): 15-22.
10
Manjunath, K A, Fried JW, et al. Matrix-Induced autologous chondrocyte implantation versus autologous chondrocyte implantation of the knee a retrospective comparison [J]. Bull Hosp Jt Dis, 2024, 82(2): 118-123.
11
Kon, E, Conte P, et al. Report on evolving indications,techniques,and outcome of novel and innovative surgical procedure-Agili C® [J]. Curr Rev Musculoskelet Med, 2025, 18(4): 124-132.
12
Ghisa C, Zaslav KR. Novel treatment options for knee cartilage defects in 2023 [J]. Sports Med Arthrosc Rev, 2024, 32(2): 113-118.
13
Bohndorf, K, Osteochondritis. Dissecans:a review and new MRI classification [J]. Eur Radiol, 1998, 8(1): 103-112.
14
Carballo, B C, Nakagawa Y, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3): 413-425.
15
Chen, S, Fu P, et al. Meniscus,articular cartilage and nucleus pulposus:a comparative review of cartilage-like tissues in anatomy,development and function [J]. Cell Tissue Res, 2017, 370(1): 53-70.
16
Moradi M, Parvizpour F, Arabpour Z, et al. Articular cartilage injury; current status and future direction [J]. Curr Stem Cell Res Ther, 2024, 19(5): 653-661.
17
Goldring, R S. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis [J]. Ther Adv Musculoskelet Dis, 2012, 4(4): 249-258.
18
Kazemi M, Williams JL. Properties of Cartilage-Subchondral bone junctions: a narrative review with specific focus on the growth plate [J]. Cartilage, 2021, 13(2_suppl): 16S-33S.
19
Yuan, L X, Meng HY, et al. Bone-cartilage interface crosstalk in osteoarthritis:potential pathways and future therapeutic strategies [J]. Osteoarthritis Cartilage, 2014, 22(8): 1077-1089.
20
Lepage, M SI, Robson N, et al. Beyond cartilage repair:the role of the osteochondral unit in joint health and disease [J]. Tissue Eng Part B Rev, 2019, 25(2): 114-125.
21
Blumenkrantz, G, Lindsey CT, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee [J]. Osteoarthritis Cartilage, 2004, 12(12): 997-1005.
22
Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis [J]. Nat Rev Rheumatol, 2012, 8(7): 390-398.
23
Chubinskaya, S, Matteo BD, et al. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model [J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6): 1953-1964.
24
Ko, K I, Lee SJ, et al. In situ tissue regeneration through host stem cell recruitment [J]. Exp Mol Med, 2013, 45(11): e57.
25
Sofu, H, Camurcu Y, et al. Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint [J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(3): 773-781.
26
Kon, E, Filardo G, et al. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model [J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1452-1464.
27
Matta Csaba, Szűcs-Somogyi Csilla, Kon Elizaveta, et al. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold [J]. Differentiation, 2019, 107: 24-34.
28
Kon Elizaveta, Filardo Giuseppe, Shani Jonathan, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model [J]. J Orthop Surg Res, 2015, 10: 81.
29
Van Genechten W, Vuylsteke K, Struijk C, et al. Joint surface lesions in the knee treated with an acellular Aragonite-Based scaffold: a 3-Year Follow-Up case series [J]. Cartilage, 2021, 13(1_suppl): 1217S-1227S.
30
Kon, E, Matteo BD, et al. Aragonite-Based scaffold for the treatment of joint surface lesions in mild to moderate osteoarthritic knees:results of a 2-Year multicenter prospective study [J]. Am J Sports Med, 2021, 49(3): 588-598.
31
Conte, P, Anzillotti G, et al. Differential analysis of the impact of lesions'location on clinical and radiological outcomes after the implantation of a novel aragonite-based scaffold to treat knee cartilage defects [J]. Int Orthop, 2024, 48(12): 3117-3126.
32
Caro D, F, Vuylsteke K, et al. Acellular Aragonite-Based scaffold for the treatment of joint surface lesions of the knee: a minimum 5-Year Follow-Up study [J]. Cartilage, 2024, 15(4): 399-406.
33
Filardo Giuseppe, Andriolo Luca, Angele Peter, et al. Scaffolds for Knee Chondral and Osteochondral Defects: Indications for Different Clinical Scenarios. A Consensus Statement [J]. Cartilage, 2021, 13(1_suppl): 1036s-1046s.
34
Kon Elizaveta, Robinson Dror, Verdonk Peter, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments [J]. Injury, 2016, 47 Suppl 6: S27-s32.
[1] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[2] 陶开亮, 高兴, 顾庆陟, 李承铎, 樊雪鹏, 田征. 兔关节软骨下骨缺损骨移植后移植骨组织学变化实验研究[J/OL]. 中华移植杂志(电子版), 2017, 11(03): 154-159.
[3] 王天瑞, 于承浩, 孙泽文, 李金波, 赵海波, 李天予, 薛俊强, 陈伟, 张英泽, 于腾波. 负重关节与非负重关节软骨基因表达差异的初步研究[J/OL]. 中华老年骨科与康复电子杂志, 2021, 07(01): 2-3.
[4] 苗壮, 刘培来. 富血小板血浆治疗膝骨关节炎的现状与展望[J/OL]. 中华临床医师杂志(电子版), 2023, 17(01): 1-6.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?