切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2025, Vol. 11 ›› Issue (04) : 193 -200. doi: 10.3877/cma.j.issn.2096-0263.2025.04.001

基础研究

应用生物信息学技术鉴定并验证绝经后骨质疏松症中靶点基因
李祖涛, 阿布都艾尼·热吾提, 车立新, 徐江波, 赵清斌()   
  1. 8300011 乌鲁木齐,新疆维吾尔自治区人民医院骨科中心创伤病区
  • 收稿日期:2024-02-16 出版日期:2025-08-05
  • 通信作者: 赵清斌
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2019D01C106)

Identification and validation of target genes in postmenopausal osteoporosis based on bioinformatics technology

Zutao Li, ReWT Abuduaini ·, Lixin Che, Jiangbo Xu, Qingbin Zhao()   

  1. Department of Orthopedics, People's Hospital of Xin jiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2024-02-16 Published:2025-08-05
  • Corresponding author: Qingbin Zhao
引用本文:

李祖涛, 阿布都艾尼·热吾提, 车立新, 徐江波, 赵清斌. 应用生物信息学技术鉴定并验证绝经后骨质疏松症中靶点基因[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(04): 193-200.

Zutao Li, ReWT Abuduaini ·, Lixin Che, Jiangbo Xu, Qingbin Zhao. Identification and validation of target genes in postmenopausal osteoporosis based on bioinformatics technology[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2025, 11(04): 193-200.

目的

应用生物信息学方法鉴定绝经后骨质疏松症的差异表达的基因并收集临床样本进行验证。

方法

利用GEO数据库筛选绝经后骨质疏松症患者和健康对照组基因表达谱芯片。采用GEO2R筛选出差异表达的miRNAs,利用miRDB、miRTarBase、Targetscan在线数据库进行靶基因预测,利用DAVID数据库对靶基因进行GO富集分析以及KEGG信号通路分析,并利用STRING在线网站构建蛋白质-蛋白质相互作用(PPI)网络并在Cytoscape软件中进行可视化。使用MCODE插件对PPI网络进行了模块分析,使用Hubba插件以关联度>10为标准筛选Hub基因。收集临床样本应用qRT-PCR和Western blot在基因和蛋白水平验证上述鉴定出的关键基因。

结果

本研究共鉴定出46个差异表达的miRNAs,利用miRDB、miRTarBase、Targetscan在线数据库进行靶基因预测,并对预测的结果进行多个数据库的筛选、并取交集,最终挑选出三个数据库共筛选出的靶基因97个。经过GO、KEGG富集分析,观察到差异表达的基因在生物学过程中主要富集在横纹肌调控;在细胞定位中,基因主要富集在细胞质和核质中;分子功能上看,基因主要集中转录共激活因子结合;在信号通路方面基因主要富集在FoxO信号通路等。利用STRING在线网站构建PPI网络并在Cytoscape软件中进行可视化,得出PPI网络中的Hub基因分别为:CCND1、FOSL1、JUNB、IGF1R、BTG2等。用qRT-PCR和Western blot方法验证临床样本中上述鉴定出的基因,其中:BTG2、CCND1、JUNB、IGF1R在骨质疏松组表达增高,差异有统计学意义(P<0.05),而FOSL1表达两组无统计学意义(P>0.05)。

结论

本研究应用生物信息学方法鉴定得出了差异表达的关键基因并收集临床样本进行验证,有助于探索绝经后骨质疏松症新的诊断和治疗靶点,为研究绝经后骨质疏松症的临床诊断和治疗提供新的切入点。

Objective

The differentially expressed genes of postmenopausal osteoporosis were identified by bioinformatics and clinical samples were collected for verification.

Methods

The gene expression microarray of postmenopausal osteoporosis patients and healthy controls was screened by GEO database; the differentially expressed miRNAs was screened by GEO2R, and the target genes were predicted by miRDB, miRTarBase and Targetscan online databases; the target genes were analyzed by GO enrichment analysis and KEGG signal pathway analysis by DAVID database; protein-protein interaction (PPI) network was constructed by STRING online website and visualized in Cytoscape software. The MCODE plug-in was used to analyze the PPI network, and the Hubba plug-in was used to screen the Hub gene with the correlation degree > 10 as the standard. Collect clinical samples and use qRT-PCR and Westernblot to verify the key genes identified above at gene and protein level.

Results

In this study, 46 differentially expressed miRNAs were identified, and the target genes were predicted by miRDB, miRTarBase and Targetscan online databases. The predicted results were screened and intersected by multiple databases, and 97 target genes were selected from the three databases. Through GO and KEGG enrichment analysis, it was observed that differentially expressed genes were mainly enriched in striated muscle regulation in biological process; in Cellular Component, genes were mainly enriched in cytoplasm and nucleus; in terms of molecular function, genes were mainly concentrated in transcriptional coactivator binding; in signal pathway, genes were mainly enriched in FoxO signal pathway and so on. Using STRING online website to build PPI network and visualization in Cytoscape software, it is concluded that the Hub genes in PPI network are CCND1, FOSL1, JUNB, IGF1R, BTG2 and so on. QRT-PCR and Westernblot methods were used to verify the above identified genes in clinical samples. Among them, the expression of BTG2, CCND1, JUNB and IGF1R in osteoporosis group was significantly higher than that in osteoporosis group, but there was no significant difference in FOSL1 expression between the two groups.

Conclusions

In this study, the differentially expressed key genes were identified by bioinformatics methods and clinical samples were collected for verification, which is helpful to explore new targets for diagnosis and treatment of postmenopausal osteoporosis. It provides a new starting point for the clinical diagnosis and treatment of postmenopausal osteoporosis.

图1 用火山图显示GSE93883和GSE74209两个数据集中差异表达差异的miRNAs
图4 差异基因的GO富集分析
图5 使用Cytoscape软件构建差异基因的互作网络
图7 应用Western blot对鉴定的Hub基因进行蛋白表达水平的验证
1
Lewiecki EM, Romosozumab, clinical trials, and real-world care of patients with osteoporosis[J]. Ann Transl Med, 2020, 8: 974.
2
US Preventive Services Task Force; Curry SJ, Krist AH, et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement [J]. JAMA 2018, 319: 2521-2531.
3
许航,崔宇韬,任广凯,等.骨质疏松症关键基因的筛选及生物信息学分析[J].中华老年骨科与康复电子杂志, 2023, 09(1): 18-22.
4
魏群,赵杭,赵静,等.脑卒中和骨质疏松症相关关键基因的生物信息学分析[J].中华老年骨科与康复电子杂志, 2021, 07(6): 364-371.
5
Yang TL, Shen H, Liu AQ, et al. A road map for understanding molecular and genetic determinants of osteoporosis [J]. Nat Rev Endocrinol, 2020, 16(2): 91-103.
6
Al-Barghouthi BM, Farber CR. Dissecting the genetics of osteoporosis using systems approaches [J]. Trends Genet, 2019, 35(1): 55-67.
7
王燕,李文静,吕红芝,等.骨质疏松骨折临床预测模型的建立与评价[J].中华老年骨科与康复电子杂志, 2022, 08(6): 350-360.
8
The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources [J]. Nucleic Acids Res, 2017, 45(D1): D331-D338.
9
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28(1): 27-30.
10
Xie C, Mao XZ, Huang JJ, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases [J]. Nucleic Acids Res, 2011, 39(Web Server issue): W316-W322.
11
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration [J]. Nucleic Acids Res, 2013, 41(Database issue): 808-815.
12
Lewiecki EM. Romosozumab, clinical trials, and realworld care of patients with osteoporosis [J]. Ann Transl Med, 2020, 8: 974.
13
Słupski W, Jawień P, Nowak B. Botanicals in postmenopausal osteoporosis [J]. Nutrients, 2021, 13(5): 1609.
14
Gosset A, Pouillès JM, Trémollieres F. Menopausal hormone therapy for the management of osteoporosis [J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(6): 101551.
15
Arceo-Mendoza RM, Camacho PM. Postmenopausal osteoporosis: latest guidelines [J]. Endocrinol Metab Clin North Am, 2021, 50(2): 167-178.
16
Lin KM, Lu CL, Hung KC, et al. The paradoxical role of uric acid in osteoporosis [J]. Nutrients, 2019, 11(9): 2111.
17
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay [J]. Nat Rev Genet, 2010, 11(9): 597-610.
18
Lu SY, Wang CY, Jin Y, et al. The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways [J]. Sci Rep, 2017, 7(1): 3331.
19
Sun WC, Li YT, Wei SZ. miR-4262 regulates chondrocyte viability, apoptosis, autophagy by targeting SIRT1 and activating PI3K/AKT/mTOR signaling pathway in rats with osteoarthritis [J]. Exp Ther Med, 2018, 15(1): 1119-1128.
20
Compston JE, McClung MR, Leslie WD. Osteoporosis [J]. Lancet, 2019. 393(10169): 364-376.
21
Cheng JL, Zhao XY, Liu J, et al. Bioinformatic analysis of transcriptomic data reveals novel key genes regulating osteogenic differentiation of human adipose stem cells [J]. Stem Cells Int, 2019, 2019: 1705629.
22
Bilani N, Elson L, Szuchan C, et al. Newly-identified Pathways Relating Vitamin D to Carcinogenesis: A Review [J]. In Vivo, 2021, 35(3): 1345-1354.
23
Xu JW, Chen KL, Zhao F, et al. Association between vitamin D/Calcium intake and 25-hydroxyvitamin D and risk of ovarian cancer: a dose-response relationship meta-analysis [J]. Eur J Clin Nutr, 2021, 75(3): 417-429.
24
Saul D, Drake MT. Update on approved osteoporosis therapies including combination and sequential use of agents [J]. Endocrinol Metab Clin North Am, 2021, 50(2): 179-191.
25
Tijchon E, van Ingen Schenau D, van Opzeeland F, et al. Targeted deletion of Btg1 and Btg2 results in homeotic transformation of the axial skeleton [J]. PLoS One, 2015, 10(7): e0131481.
26
Yang Y, Lu TT, Li ZM, et al. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer [J]. Cell Adh Migr, 2020, 14(1): 82-95.
27
Vallejo A, Erice O, Entrialgo-Cadierno R, et al. FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted [J]. J Hepatol, 2021, 75(2): 363-376.
28
Fu F, Wang L. Molecular cloning, characterization of JunB in Schizothorax prenanti and its roles in responding to Aeromonas hydrophila infection [J]. Int J Biol Macromol, 2020, 164: 2788-2794.
29
Li H, Wang CY, Jin Y, et al. Anti-Postmenopausal osteoporosis effects of isopsoralen: a bioinformatics-integrated experimental study [J]. Phytother Res, 2023, 37(1): 231-251.
[1] 王睿, 邓俊, 施廷鑫, 张志兆, 王成方, 张毅, 齐晓伟. FAM91A1 可能是乳腺癌患者的独立预后因子[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 274-280.
[2] 伍梦妮, 徐志华, 陈彦. DTNBP1基因在三阴性乳腺癌中的作用及其预后价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 158-168.
[3] 李乐桐, 林加曼, 王强. 1-磷酸鞘氨醇受体1 在乳腺癌患者中的表达及其对预后和免疫浸润的影响[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 105-114.
[4] 李怡泉, 谢宇斌, 胡宏, 张燕茹, 陈图锋. 基于生物信息学分析HDAC8在结肠癌中的临床意义及其与免疫浸润的关系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 275-281.
[5] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[6] 马秋双, 杨茗涵, 王耀林, 兰莹莹, 刘子腾, 张金库. 非小细胞肺癌中血清外泌体人源微小RNA-195-5p 的表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 261-265.
[7] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[8] 迟云霞, 吕强, 郑颖, 朱晗玉, 蔡广研, 陈香美. 肾脏病学研究生生物信息学教学的思考与实践[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 115-117.
[9] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[10] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[11] 丁富贵, 吴泽涛, 董卫国. 家族性腺瘤性息肉病临床特征及生物信息学分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 512-518.
[12] 盛鹏, 柏立哲, 张靖, 李丹, 曹宏. 低聚半乳糖增强去卵巢小鼠肠道屏障功能预防骨质流失[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 48-57.
[13] 嵇宏声, 魏万顷, 邱建国, 王留成, 姜福金, 张先云, 王苏贵. KPNB1 在膀胱癌中的表达及其对膀胱癌细胞增殖和迁移能力的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1044-1053.
[14] 邓绮玲, 庄杰兰, 董家铭, 苏镜. 基于生物信息学分析原发性痛风性关节炎与高尿酸血症的关键基因及相关通路[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 97-105.
[15] 曹磊, 邵轶普, 张志中, 王晨潮, 孙开文, 董阳, 闫东明, 李红伟, 杨波. 基于遗传基因的烟雾病与烟雾综合征生物信息学分析机制研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 350-356.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?