切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2024, Vol. 10 ›› Issue (06) : 372 -378. doi: 10.3877/cma.j.issn.2096-0263.2024.06.008

综述

肌肉因子对骨骼调控作用的研究进展
张鹏飞1, 王雯1,()   
  1. 1.050017 石家庄市,河北医科大学口腔医(学)院正畸科,河北省口腔医学重点实验室,河北省口腔健康技术创新中心
  • 收稿日期:2023-01-25 出版日期:2024-12-05
  • 通信作者: 王雯
  • 基金资助:
    河北省教育厅重点项目(ZD2022010)河北省2023年政府资助临床医学优秀人才培养项目(ZF2023014)河北省自然基金青年基金项目(H2020206226)河北省教育厅青年基金项目(QN2018145)

Myokines: muscle as an endocrine organ regulates the bone homeostasis

Pengfei Zhang1, Wen Wang1,()   

  1. 1.Department of Orthodontics,School and Hospital of Stomatology,Hebei Key Laboratory of Stomatology,Hebei Technology Innovation Center of Oral Health,Shijiazhuang 050017,China
  • Received:2023-01-25 Published:2024-12-05
  • Corresponding author: Wen Wang
引用本文:

张鹏飞, 王雯. 肌肉因子对骨骼调控作用的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 372-378.

Pengfei Zhang, Wen Wang. Myokines: muscle as an endocrine organ regulates the bone homeostasis[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2024, 10(06): 372-378.

肌肉与骨骼组织为一体化器官,解剖相邻,相辅相成。肌肉-骨骼单元对于个体的自主运动非常重要,机械负荷是连接两种组织的关键机制。近年来的研究表明,肌肉骨骼间除机械耦合关系外,在循环和局部微环境中存在耦联肌肉和骨骼生长的细胞因子,介导两者间的交互作用。其中骨骼肌分泌的细胞因子称为肌肉因子。常见的肌肉因子包括肌肉生长抑制素(MSTN)、鸢尾素(irisin)、胰岛素样生长因子-1(IGF-1)、成纤维细胞生长因子-2(FGF-2)、白细胞介素6(IL-6)、白细胞介素15(IL-15)、骨甘氨酸(OGN)、骨激活素(OA)等。为了进一步深入了解肌肉因子对骨骼的调控网络及内在机制,本文将对肌肉因子对骨稳态的调控作用进行综述,以期为深入理解肌肉因子对骨骼调控的生物学基础提供新视角,同时为肌肉骨骼相关疾病寻找潜在治疗靶点提供新的思路。

Muscle and skeletal tissues are integrated organs.They are complementary and anatomically adjacent.The muscle-bone unit are important for the voluntary movement of the individual.Mechanical loading is the key mechanism that connects the two tissues. Recent studies have shown that except for the mechanical coupling between muscles and skeletons,there are cytokines in the circulatory and local microenvironment that couple and mediate the interaction between the two tissues.The cytokines secreted by skeletal muscle are called myokines,which including myostatin(MSTN),Irisin,Insulin-like growth factor-1(IGF-1),fibroblast growth factor-2 (FGF-2), Interleukin-6 (IL-6), Interleukin-15 (IL-15), Osteoglycin (OGN), Osteoactivin(OA).In order to further understand the regulatory network and internal mechanism of muscle factors on bone,we will review the molecular regulation of muscle on bone homeostasis,hoping to provide new perspectives for understanding the biological basis of muscle factors on bone regulation and searching for potential therapeutic targets for musculoskeletal diseases in clinic.

图1 肌肉分泌肌肉因子间接或直接调控骨量
图2 肌肉生长抑制素调节骨量
18
Estell EG,Le PT,Vegting Y,et al.Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo [J]. Elife, 2020, 9:e58172.
19
Zhu BS,Wang B, Zhao C, et al. Irisin regulates cardiac responses to exercise in health and diseases: a narrative review [J]. J Cardiovasc Transl Res,2023,16(2):430-442.
20
Zhu, X. Irisin deficiency disturbs bone metabolism [J]. J Cell Physiol,2021,236(1):664-676.
21
Kim H,Wrann CD, Jedrychowski M, et al. Irisin mediates effects on boneandfatviaαVintegrinreceptors[J].Cell,2018,175(7):1756-1768.
22
Hanwright PJ,Qiu C,Rath J,et al.Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair [J]. Biomaterials, 2022,280:121244.
23
Zaidi M, Kim SM, Mathew M, et al. Bone circuitry and interorgan skeletal crosstalk[J].Elife,2023,12:e83142.
24
Xu H,Wang WT,Liu X,et al.Targeting strategies for bone diseases:signaling pathways and clinical studies [J]. Signal Transduct Target Ther,2023,8(1):202.
25
Yan B,Zeng C,Chen Y,et al.Mechanical Stress-Induced IGF-1 facilitates col-I and col-III synthesis via the IGF-1R/AKT/mTORC1 signaling pathway[J].Stem Cells Int,2021,2021:5553676.
26
Zhou A,Wu B,Yu H,et al.Current understanding of osteoimmunology in certain osteoimmune diseases[J].Front Cell Dev Biol,2021,9:698068.
27
Takayanagi H. Osteoimmunology- bidirectional dialogue and inevitable union of the fields of bone and immunity [J]. Proc Jpn Acad Ser B Phys Biol Sci,2020,96(4):159-169.
28
Miyagawa K, Ohata Y, Delgado-Calle J, et al. Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo[J].JCI Insight,2020,5(6):133113.
29
Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures[J].FASEB J,1996,10(4):502-509.
30
Freiin von Hövel F, Kefalakes E, Grothe C. What Can We Learn from FGF-2 Isoform-Specific Mouse Mutants? Differential Insights into FGF-2 Physiology In Vivo[J].Int J Mol Sci,2020,22(1):390.
31
Zhao X, Erhardt S, Sung K,Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol, 2023, 11:1112890.
32
Liang TZ,Li PF,Liang AJ,et al.Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: an in vitro study[J].BMC Musculoskelet Disord,2022,23(1):985.
33
Ma MJ, Li HY, Wang P, et al.ATF6 aggravates angiogenesis-osteogenesis coupling during ankylosing spondylitis by mediating FGF2 expression in chondrocytes[J].iScience,2021,24(7):102791.
34
Hayes AJ, Whitelock J, Melrose J. Regulation of FGF-2, FGF-18 and transcription factor activity by perlecan in the maturational development of transitional rudiment and growth plate cartilages and in the maintenance of permanent cartilage homeostasis [J]. Int J Mol Sci,2022,23(4):1934.
35
Kang SJ, Narazaki M, Metwally H, et al. Historical overview of the interleukin- 6 family cytokine [J]. J Exp Med, 2020, 217(5):e20190347.
36
Zhang L, Sun Y. Muscle-Bone crosstalk in chronic obstructive pulmonary disease[J].Front Endocrinol(Lausanne),2021,12:724911.
37
Yokota K, Sato K, Miyazaki T, et al. Characterization and function of tumor necrosis factor and interleukin-6-Induced osteoclasts in rheumatoid arthritis[J].Arthritis Rheumatol,2021,73(7):1145-1154.
3
8Li YD,Feng J,Song S,et al.gp130 controls cardiomyocyte proliferation and heart regeneration[J].Circulation,2020,142(10):967-982.
9Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6 [J]. Science,1992,257(5066):88-91.
4
0Delgado-Calle J, Bellido T. The osteocyte as a signaling cell [J].Physiol Rev,2022,102(1):379-410.
1Silva DA,Yu S, Ulge UY, et al. De novo design of potent and selective mimics of IL-2 and IL-15[J].Nature,2019,565(7738):186-191.
2Wang QC, Hernández-Ochoa EO, Viswanathan MC, et al. CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution[J].Nat Commun,2021,12(1):3175.
3Wong L,McMahon LP.Crosstalk between bone and muscle in chronic kidney disease [J]. Front Endocrinol (Lausanne), 2023, 14:1146868.
4Sellin ML,Klinder A,Bergschmidt P,et al.IL-6-induced response of human osteoblasts from patients with rheumatoid arthritis after inhibition of the signaling pathway [J]. Clin Exp Med, 2023,Online ahead of print.
5Xiao SQ,Cheng M,Wang L,et al.The role of apoptosis in the pathogenesis of osteoarthritis[J].Int Orthop,202,Online ahead of print.
6Nulali JYA, Zhan M, Zhang KW, et al. Osteoglycin: an ECM factor regulating fibrosis and tumorigenesis [J]. Biomolecules, 2022, 12(11):1674.
7Tanaka KI,Kanazawa I,Kaji H,et al.Association of osteoglycin and FAM5C with bone turnover markers,bone mineral density,and vertebral fractures in postmenopausal women with type 2 diabetes mellitus[J].Bone,2017,95:5-10.
8Deckx S,Heggermont W,Carai P,et al.Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation [J]. Matrix Biol,2018,66:110-124.
9Umrath F, Pfeifer A, Cen W, et al. How osteogenic is dexamethasone?-effect of the corticosteroid on the osteogenesis,extracellular matrix,and secretion of osteoclastogenic factors of jaw periosteumderived mesenchymal stem/stromal cells [J]. Front Cell Dev Biol,2022,10:953516.
5
0Otero-Tarrazón A,Perelló-Amorós M,Jorge-Pedraza V,et al.Muscle regeneration in gilthead sea bream:Implications of endocrine and local regulatory factors and the crosstalk with bone [J]. Front Endocrinol(Lausanne),2023,14:1101356.
1Tagliaferri C,Wittrant Y,Davicco MJ,et al.Muscle and bone,two interconnected tissues[J].Ageing Res Rev,2015,21:55-70.
2Abdelmagid SM,Barbe MF,Rico MC,et al.Osteoactivin,an anabolic factor that regulates osteoblast differentiation and function [J].Exp Cell Res,2008,314(13):2334-2351.
3Frara N,Abdelmagid SM,Sondag GR,et al.Transgenic expression of osteoactivin/gpnmb enhances bone formation in vivo and osteoprogenitor differentiation Ex vivo[J].J Cell Physiol,2016,231(1):72-83.
4Li J,Yang Q,Han L,et al.C2C12 mouse myoblasts damage induced by oxidative stress is alleviated by the antioxidant capacity of the active substance phloretin[J].Front Cell Dev Biol,2020,8:541260.
5Guo YS, Hao DJ, Hu HM. High doses of dexamethasone induce endoplasmic reticulum stress-mediated apoptosis by promoting Calcium ion influx-dependent CHOP expression in osteoblasts[J].Mol Biol Rep,2021,48(12):7841-7851.
6Sondag GR, Mbimba TS, Moussa FM, et al. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling [J].Exp Mol Med,2016,48(9):e257.
1
Gries KJ,Zysik VS,Jobe TK,Griffin N,Leeds BP,Lowery JW.Muscle-derived factors influencing bone metabolism[J].Semin Cell Dev Biol,2022,123:57-63.
2
Lara-Castillo N, Johnson ML. Bone-Muscle mutual interactions [J].Curr Osteoporos Rep,2020,18(4):408-421.
3
Lee SJ, Lehar A, Rydzik R, et al. Functional replacement of myostatin with GDF-11 in the germline of mice[J].Skelet Muscle,2022,12(1):7.
4
Suh J, Kim NK, Lee SH, et al. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone[J].Proc Natl Acad Sci U S A,2020,117(9):4910-4920.
5
Julien A, Kanagalingam A, Martínez-Sarrà E, Megret J, Luka M,Ménager M, Relaix F, Colnot C. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair [J]. Nat Commun, 2021,12(1):2860.
6
Esposito P,Verzola D,Picciotto D,et al.Myostatin/Activin-A signaling in the vessel wall and vascular calcification [J]. Cells, 2021, 10(8):2070.
7
Tang L,An S,Zhang Z,et al.MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats[J]. Bone,2021,143:115610.
8
Mishra A, Kumar R, Mishra SN, et al. Differential expression of Non-Coding RNAs in stem cell development and therapeutics of bone disorders[J].Cells,2023,12(8):1159.
9
Lee J,Tompkins Y,Kim DH,et al.The effects of myostatin mutation on the tibia bone quality in female Japanese quail before and after sexual maturation[J].Poult Sci,2023,102(7):102734.
10
Ali D,Tencerova M,Figeac F,et al.The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men:The mechanisms and roles of increased bone marrow adiposity [J]. Front Endocrinol(Lausanne),2022,13:981487.
11
Yang M, Liu C, Jiang N, et al. Myostatin:a potential therapeutic target for metabolic syndrome [J]. Front Endocrinol (Lausanne), 2023,14:1181913.
12
Rodríguez A, Catalán V, Ramírez B, et al. Impact of adipokines and myokinesonfatbrowning[J].JPhysiolBiochem,2020,76(2):227-240.
13
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin[J].Endocr Rev,2021,42(4):436-456.
14
Liu JR,Wang X,Fan DM,et al.Irisin as a predictor of bone metabolism in Han Chinese Young Men with pre-diabetic individuals [J].BMC Endocr Disord,2022,22(1):281.
15
Kan TY,He ZH,Du JK,et al.Irisin promotes fracture healing by improving osteogenesis and angiogenesis [J]. J Orthop Translat, 2022,37:37-45.
16
Tsourdi E,Anastasilakis AD,Hofbauer LC,Rauner M,Lademann F.Irisin and Bone in Sickness and in Health:A Narrative Review of the Literature[J].J Clin Med,2022,11(22):6863.
17
Chen X,Sun K,Zhao S,et al.Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway[J]. Cytokine,2020,136:155292.
[1] 李英纳, 李敏, 周澳洋, 李平, 杨凡. 肥胖症儿童血浆脑源性神经营养因子水平及其代谢异常的相关性研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 81-88.
[2] 王典, 刘双赫, 曾峥. 肩关节镜术后肌肉功能改变对颈椎形态及矢状面参数影响的自身前后对照队列研究[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 371-378.
[3] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[4] 杨继红, 马德安, 杨晓春, 罗能钦, 马蓉, 刘扬, 党雅梅. 阴囊壁平滑肌肉瘤一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 93-95.
[5] 程必盛, 黄海. 盆腔肿瘤手术后的"隐藏危机":泌尿功能障碍的防范与处理[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 1-5.
[6] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[7] 孙丹, 林汇斯. 妇科手术人体工学研究现状[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 318-320.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 王凯飞, 牟怡平, 李晓辉, 王瑞涛, 侯惠莲, 张月浪. 原发性肝平滑肌肉瘤临床病理特征及疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 357-362.
[10] 吴孝琦, 罗飞, 史凡凡, 方青. 移动健康在慢性肌肉骨骼疼痛患者自我管理中的应用进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 251-256.
[11] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[12] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[13] 王超珺, 刘昭晖. 肌肉减少型肥胖的诊疗进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 269-275.
[14] 王鑫鑫, 陆斐, 余群飞, 支小燕, 王文霞, 马姚静, 位宁. 不同腰臀比对正常体质量指数老年人肌肉力量的影响[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 35-39.
[15] 田桦, 丁芳, 黄晓莉, 张丽君. 脑蛋白水解物对痉挛型脑瘫患儿肌肉痉挛评分、脑血流量及血清IGF-1、MBP、IL-6的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 49-54.
阅读次数
全文


摘要