切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2020, Vol. 06 ›› Issue (05) : 257 -264. doi: 10.3877/cma.j.issn.2096-0263.2020.05.003

所属专题: 文献

股骨骨折

股骨骨折后残留内/外翻畸形愈合对膝关节生物力学影响的有限元分析
丁凯1, 陈伟1(), 杨伟杰1, 胡畔1, 连晓东1, 程晓东1, 崔蕴威1, 张奇1, 侯志勇1, 朱燕宾1,()   
  1. 1. 050051 河北医科大学第三医院创伤急救中心,河北省骨科研究所,河北省骨科生物力学重点实验室
  • 收稿日期:2020-08-15 出版日期:2020-10-05
  • 通信作者: 陈伟, 朱燕宾
  • 基金资助:
    河北省优秀青年基金项目(H2017206104); 国家自然科学基金面上项目(82072447); 国家自然科学基金青年科学基金项目(81401789)

Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint

Kai Ding1, Wei Chen1,(), Weijie Yang1, Pan Hu1, Xiaodong Lian1, Xiaodong Cheng1, Yunwei Cui1, Qi Zhang1, Zhiyong Hou1, Yanbin Zhu1()   

  1. 1. Trauma Emergency Center, the Third Hospital of Hebei Medical University, Orthopaedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, China
  • Received:2020-08-15 Published:2020-10-05
  • Corresponding author: Wei Chen, Yanbin Zhu
  • About author:
    Corresponding author: Chen Wei, Email:
引用本文:

丁凯, 陈伟, 杨伟杰, 胡畔, 连晓东, 程晓东, 崔蕴威, 张奇, 侯志勇, 朱燕宾. 股骨骨折后残留内/外翻畸形愈合对膝关节生物力学影响的有限元分析[J]. 中华老年骨科与康复电子杂志, 2020, 06(05): 257-264.

Kai Ding, Wei Chen, Weijie Yang, Pan Hu, Xiaodong Lian, Xiaodong Cheng, Yunwei Cui, Qi Zhang, Zhiyong Hou, Yanbin Zhu. Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2020, 06(05): 257-264.

目的

探讨股骨中下段骨折后内/外翻畸形愈合对膝关节应力分布与接触面积影响的生物力学研究。

方法

选取正常成年男性志愿者,进行下肢CT薄层扫描和膝关节MRI成像,利用Mimics软件将CT和MRI图像配准后进行三维重建,建立一个正常下肢模型。在正常模型的基础上对骨和软组织进行位置调整,分别建立股骨中下段骨折残留3°、5°、10°内/外翻畸形愈合模型。然后在有限元分析软件Abaqus中计算畸形愈合对膝关节内外侧间室von Mises应力与接触面积。

结果

成功建立了正常人下肢及膝关节模型,其形态结构基于下肢CT和MRI重建,与真实膝关节高度相似,并在其基础上建立了股骨远端1/3内/外翻畸形愈合模型。正常中立位内侧胫骨软骨的接触面积与最大应力是244.36 mm2,0.64 mpa,外侧则是196.25 mm2,0.76 mpa。与正常中立位相比,随着正常中立位至股骨内翻角度10°,内侧胫骨软骨接触面积与最大应力增大至264.61 mm2,1.16 mpa,相应的胫骨平台外侧逐渐减小至31.32 mm2,0.35 mpa。而随着正常中立位至股骨外翻10°,内侧平台软骨接触面积与最大应力逐渐减小至24.58 mm2,0.27 mpa,外侧胫骨软骨则逐渐增大至215.46 mm2,2.08 mpa。与正常中立位模型对比时,内侧软骨下骨应力,半月板应力大小与分布范围随着内翻程度增大逐渐增大,随着外翻程度增大逐渐减小。外侧软骨下骨与半月板变化趋势则与之相反。

结论

股骨内外翻畸形对膝关节间室接触面积和应力分布有明显影响。股骨手术应尽力避免残留内外翻畸形,应早期治疗避免膝关节周围结构损伤,进而延缓膝关节炎的进展。

Objective

To investigate the biomechanical effects of varus/valgus deformities after middle and lower femoral fracture on the stress distribution and contact area of knee joint.

Methods

A normal adult male volunteer was selected to undergo thin-slice CT scanning of lower extremities and MRI imaging of knee joints. After registration of CT and MRI images by Mimics software, a normal lower limb model was established. On the basis of the normal model, the position of bone and soft tissue was adjusted, and the models of 3, 5 and 10 degree of varus/valgus deformities of middle and lower femur fracture were established respectively.

Results

The models of normal lower extremities was successfully established. Their morphological structure was highly similar to those of the real knee joints. On the basis of them, the models of varus/valgus deformities of distal femur were established.The contact area and maximum stress of medial tibial cartilage in normal neutral position was 244.36 mm2 and 0.64 mpa, while that of lateral was 196.25 mm2 and 0.76 mpa. Compared with the normal neutral position, with the angle from normal neutral position to 10° of varus, the contact area and maximum stress of medial tibial cartilage increased to 264.61 mm2 and 1.16 mpa, and the lateral tibial plateau gradually decreased to 31.32 mm2 and 0.35 mpa. With the normal neutral position to 10° of valgus, the contact area and maximum stress of medial plateau cartilage gradually decreased to 24.58 mm2 and 0.27 mpa, while that of lateral plateau cartilage increased to 215.46 mm2 and 2.08 mpa.Compared with the normal neutral model, the maximum stress of medial subchondral bone, the maximum stress and distribution of meniscus increased with the increase of varus degree, and decreased with the increase of valgus degree. The variation trend of the lateral subchondral bone and meniscus was opposite.

Conclusion

The varus/valgus deformity of femur has a significant effect on the contact area and stress distribution of knee joint compartment. In the operation of femur, we should try our best to avoid residual varus/valgus deformity, and early treatment should be carried out to avoid the injury of the structure around the knee joint, so as to delay the progress of knee arthritis.

表1 膝关节模型结构单元的材料参数表
图1 接触面积分布示意图
图2~3 正常中立位下肢与胫骨软骨应力分布
表2 不同研究膝关节内外侧接触面积与应力比较
表3 不同研究膝关节内外侧接触面积与应力比较
图8 股骨内外翻畸形下半月板的Vonmises应力分布
表4 股骨内外翻畸形愈合下胫骨软骨内外侧Vonmises最大应力
1
Zhang Y, Su Y, Hao J, et al. Clinical Epidemiology of Orthopedic Trauma [M]. Stuttgart: Georg ThiemeVerlag.
2
Perren SM. Fracture healing. The evolution of our understanding [J]. ActaChirOrthopTraumatolCech, 2008, 75(4): 241-246.
3
Bolhofner BR, Carmen B, Clifford P. The results of open reduction and Internal fixation of distal femur fractures using a biologic (indirect) reduction technique [J]. J Orthop Trauma, 1996,10(6): 372-377.
4
Bono CM, Levine RG, Rao JP, et al. Nonarticular proximal tibia fractures: treatment options and decision making [J]. J Am AcadOrthopSurg, 2001, 9(3): 176-186.
5
王昊,方诗元,王叙进,等.传统切开复位与顺势反向牵引复位微创固定治疗股骨远端骨折的临床比较[J].中华老年骨科与康复电子杂志, 2018, 4(05): 7-10.
6
Tornetta P, Egol KA, Ertl JP, et al. Locked plating versus retrograde nailing for distal femur fractures: a multicentre randomized trial [J]. Phoenix: Orthopaedic Trauma Association, 2013.
7
Brouwer GM, van Tol AW, Bergink AP, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee [J]. Arthritis Rheum, 2007, 56(4): 1204-1211.
8
Kettelkamp DB, Hillberry BM, Murrish DE, et al. Degenerative arthritis of the knee secondary to fracture malunion [J]. ClinOrthopRelat Res, 1988(234): 159-169.
9
Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of the lower extremity [J]. Journal of Bone and Joint Surgery, American Volume, 1987, 69(5): 745-749.
10
Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty [J]. ClinOrthopRelat Res, 1995(321): 168-172.
11
Skaggs DL, Warden WH, Mow VC. Radial tie fibers influence the tensile properties of the bovine medial meniscus [J]. J Orthop Res, 1994, 12(2): 176-185.
12
Tissakht M, Ahmed AM. Tensile stress-strain characteristics of the human meniscal material [J]. J Biomech, 1995, 28(4): 411-422.
13
Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments [J]. J Biomech, 1986, 19(6): 425-432.
14
Blankevoort L, Kuiper JH, Huiskes R, et al. Articular contact in a three-dimensional model of the knee [J]. J Biomech, 1991, 24(11): 1019-1031.
15
Donahue TL, Hull ML, Rashid MM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact [J]. J BiomechEng, 2002, 124(3): 273-280.
16
McKellop HA, Sigholm G, Redfern FC, et al. The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint [J]. J Bone Joint Surg Am, 1991, 73(9): 1382-1391.
17
Morimoto Y, Ferretti M, Ekdahl M, et al. Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction [J]. Arthroscopy, 2009, 25(1): 62-69.
18
Sharma L, Song J, Felson DT, et al. The role of knee alignment in disease progression and functional decline in knee osteoarthritis [J]. Jama, 2001, 286(2): 188-195.
19
Felson DT, Niu J, Gross KD, et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative [J]. Arthritis Rheum, 2013, 65(2): 355-362.
20
Quirno M, Campbell KA, Singh B, et al. Distal femoral varus osteotomy for unloading valgus knee malalignment: a biomechanical analysis [J]. Knee Surg Sports TraumatolArthrosc, 2017, 25(3): 863-868.
21
Rajgopal A, Noble PC, Vasdev A, et al. Wear Patterns in Knee Articular Surfaces in Varus Deformity[J]. J Arthroplasty, 2015,30(11):2012-2016.
22
Zamber RW, Teitz CC, McGuire DA, et al. Articular cartilage lesions of the knee [J]. Arthroscopy, 1989, 5(4): 258-268.
23
Irvine GB, Glasgow MM. The natural history of the meniscus in anterior cruciate insufficiency. Arthroscopic analysis [J]. J Bone Joint Surg Br, 1992, 74(3): 403-405.
24
Masouros SD, McDermott ID, Amis AA, et al. Biomechanics of the meniscus-meniscal ligament construct of the knee [J]. Knee Surg Sports TraumatolArthrosc, 2008, 16(12): 1121-1132.
25
Lim BW, Hinman RS, Wrigley TV, et al. Varus malalignment and its association with impairments and functional limitations in medial knee osteoarthritis[J]. Arthritis Rheum, 2008, 59(7): 935-942.
26
Bobinac D, Spanjol J, Zoricic S, et al. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans [J]. Bone, 2003, 32(3): 284-290.
27
Pogoda P, Priemel M, Rueger JM, et al. Bone remodeling: new aspects of a key process that controls skeletal maintenance and repair [J]. OsteoporosInt, 2005, 16Suppl 2: S18-S24.
28
Fang J, Gong H, Kong L, et al. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments [J]. Biomed Eng Online, 2013, 12: 130.
29
郑艮强,吴斗,赵恩哲,等.膝关节周围截骨术对膝关节骨关节炎伴内翻畸形的治疗策略[J].中华老年骨科与康复电子杂志, 2016, 2(01): 44-49.
30
Na YG, Lee BK, Hwang DH, et al. Can osteoarthritic patients with mild varus deformity be indicated for high tibial osteotomy? [J]. Knee, 2018, 25(5): 856-865.
31
Bode G, Schmal H, Pestka JM, et al. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5 degrees [J]. Arch Orthop Trauma Surg, 2013, 133(1): 43-49.
[1] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[2] 罗欢, 李川, 蔡兴博, 浦路桥, 孟晨, 赵庆刚, 徐永清. 臀下动脉来源的股骨头后上支持带动脉观察[J]. 中华关节外科杂志(电子版), 2024, 18(04): 439-444.
[3] 江梦钰, 陈志文, 胡云浩, 凡一诺, 方汉军, 刘予豪, 王海彬, 何伟, 陈镇秋, 周驰. 根据股骨头负重区判断非创伤性股骨头坏死带塌陷生存[J]. 中华关节外科杂志(电子版), 2024, 18(03): 307-313.
[4] 刘晓凡. 老年股骨头坏死髋关节置换术后康复应用多维度干预[J]. 中华关节外科杂志(电子版), 2024, 18(03): 314-319.
[5] 何梦媛, 胡鸿保, 谢庆云, 廖冬发, 王维. 股骨头坏死的代谢组学的相关研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(03): 379-382.
[6] 田志敏, 何淳诺, 李焕玺, 吴昊越, 刘鹏, 乔永杰, 周胜虎, 蓝平衡, 郭氧, 张浩强. 股骨头坏死动物模型研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(03): 383-389.
[7] 刘正宇, 刘春风, 王振. 改良后外侧入路半髋置换治疗股骨颈骨折的早期疗效[J]. 中华关节外科杂志(电子版), 2024, 18(03): 409-413.
[8] 卢国良, 潘耀成. 比较不同类型假体用于骨质疏松症的老年股骨颈骨折[J]. 中华关节外科杂志(电子版), 2024, 18(02): 277-279.
[9] 欧梁, 齐麒, 胡伟伟, 卢敏, 黄彦昌, 黄维琛, 匡建军. 股骨颈动力交叉钉系统与其它内固定治疗股骨颈骨折对比[J]. 中华关节外科杂志(电子版), 2024, 18(01): 92-105.
[10] 高瑞, 康迪斯, 秦蘅, 胡月明, 初同伟, 代丽. 加速康复管理改善膝关节置换术后肺部感染并发症和疗效的Meta分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 234-237.
[11] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[12] 茹江英, 廖启宇, 温国洪, 潘思华, 刘栋, 张皓琛, 牛云飞. 直接前方入路和后外侧入路半髋关节置换治疗老年痴呆股骨颈骨折的疗效比较[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 287-293.
[13] 张于, 程亮亮, 王峰, 赵德伟. 2枚与3枚空心钉治疗无移位股骨颈骨折的疗效对比[J]. 中华老年骨科与康复电子杂志, 2024, 10(05): 281-286.
[14] 浦路桥, 李川, 齐宝闯, 卜鹏飞, 蔡兴博, 白艳, 罗欢, 徐永清. 改良与传统股方肌骨瓣治疗青壮年股骨头坏死的临床疗效比较[J]. 中华老年骨科与康复电子杂志, 2024, 10(03): 165-170.
[15] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(09): 980-987.
阅读次数
全文


摘要