切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2019, Vol. 05 ›› Issue (05) : 291 -296. doi: 10.3877/cma.j.issn.2096-0263.2019.05.009

所属专题: 文献

基础研究

hIGF-I基因增强Mosaicplasty技术重建膝负重区大面积骨软骨复合缺损实验研究
张洁1, 黄辉2, 姜翠萍3, 孙一4, 李晓飞4, 张海宁4,(), 王英振4   
  1. 1. 261000 潍坊市中医院内分泌科
    2. 266000 青岛大学附属医院麻醉科
    3. 266000 青岛大学附属医院手术室
    4. 266000 青岛大学附属医院关节外科
  • 收稿日期:2019-06-08 出版日期:2019-10-05
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金项目资助课题(81672197)

Reconstruct large osteochondral defects of weight-bearing area by hIGF-I gene enhanced Mosaicplasty technique

Jie Zhang1, Hui Huang2, cuiping Jiang3, Yi Sun4, Xiaofei Li4, Haining Zhang4,(), Yingzhen Wang4   

  1. 1. Department of Endocrinology, Weifang Traditional Chinese Hosptial, Weifang 261000, China
    2. Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
    3. Operation room, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
    4. Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2019-06-08 Published:2019-10-05
  • Corresponding author: Haining Zhang
引用本文:

张洁, 黄辉, 姜翠萍, 孙一, 李晓飞, 张海宁, 王英振. hIGF-I基因增强Mosaicplasty技术重建膝负重区大面积骨软骨复合缺损实验研究[J/OL]. 中华老年骨科与康复电子杂志, 2019, 05(05): 291-296.

Jie Zhang, Hui Huang, cuiping Jiang, Yi Sun, Xiaofei Li, Haining Zhang, Yingzhen Wang. Reconstruct large osteochondral defects of weight-bearing area by hIGF-I gene enhanced Mosaicplasty technique[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2019, 05(05): 291-296.

目的

研究hIGF-I基因增强组织工程提高Mosaicplasty修复大面积骨软骨缺损的修复质量,改善骨软骨的整合。

方法

制造山羊膝关节股骨髁大面积骨软骨缺损模型,使用自制Mosaicplasty器械,植入2 mm直径骨软骨柱镶嵌充填缺损,以hIGF-I基因转染的骨髓基质干细胞复合可注射藻酸钙凝胶填充残余缺损。同时设立未转染hIGF-I基因的骨髓基质干细胞组、Mosaicplasty组和对照组。术后4 w、8 w、16 w处死动物,行大体观察、光镜、电镜观察,磁共振检查比较修复效果。

结果

骨软骨缺损在16 w时IGF-I基因增强Mosaicplasty组移植物固定牢固,关节面平滑,移植物间界限消失,新生软骨组织类似于正常软骨,4~16 w修复效果逐渐改善,优于其他各组。光镜观察见移植的骨软骨生长良好,与新生软骨组织紧密相连,新生的软骨细胞排列规整,细胞外基质分布均一。对照组无明显修复。MRI观察类似大体观察结果。

结论

使用转染hIGF-I基因的骨髓基质干细胞复合可注射藻酸钙凝胶可促进Mosaicplasty后骨软骨的整合,改善其修复效果。

Objective

To investigate the outcome of hIGF-I gene enhanced Mosaicplasty to repair large-sized osteochondral compound defects.

Methods

Osteochondral defects were created on the femoral condyle with the customed Mosaicplasty instruments in a diameter of 6 mm. Osteochondral plugs were harvested around the intercondylar fossa or intertrochlea groove, and pressed into the recipient sites by special instruments in a mosaic mode. hIGF-I gene enhanced tissue engineering was then applied to fill the "dead space" after Mosaicplasty. From 4 to 16 weeks postoperatively, the animals were sacrificed and the specimens were investigated in gross and under electromicroscopy as well as MRI detection.

Results

The transplanted subchondral bone and superficial cartilage was integrated hardly with each other or with recipient sites in hIGF-I enhanced Mosaicplasty groups. The quality and appearance of the transplanted and regenerated cartilage was similar to normal hyaline cartilage. Under microscopy, the regenerated cartilage was integrated with neighbor tightly in regular arrange. ECM distributed evenly and deeply stained by alcian blue. MRI analysis also demonstrated the healing process between the subchondral bone other than the contrast groups. The effectiveness of the GETE modified Mosaicplasty groups was apparently better than BMSCs modified Mosaicplasty groups and contrast groups.

Conclusions

hIGF-I gene enhanced tissue engineering can ameliorate the outcome of Mosaicplasty to repair the osteochondral defects in large size.

图2 hIGF-I-BMSCs-Mosaicplasty组新生软骨细胞排列密集,基质着色深。
图6 扫描电镜观测可见修复组织表面平滑,纤维排列规整。
图8 MRI观察hIGF-I-BMSCs-Mosaicplasty组软骨层厚度均一,较平滑光整。
[1]
Baltzer AW,Ostapczuk MS,Terheiden HP, et al. Good short-to medium-term results after osteochondral autograft transplantation(OAT)in middle-aged patients with focal,non-traumatic osteochondral lesions of the knee [J]. Orthop Traumatol Surg Res, 2016, 102(7): 879-884.
[2]
De Almeida LO,Da S,De Mello GG, et al. Surgical treatment of osteochondral lesions of the knee by means of mosaicplasty [J]. Rev Bras Ortop, 2015, 45(2): 166-173.
[3]
Robert H. Chondral repair of the knee joint using mosaicplasty [J]. Orthop Traumatol Surg Res, 2011, 97(4): 418-429.
[4]
Mccoy B,Miniaci A. Osteochondral autograft transplantation/mosaicplasty [J]. J Knee Surg, 2012, 25(2): 99-108.
[5]
Ma X,Sun Y,Cheng XG, et al. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation [J]. Int J Clin Exp Med, 2015, 8(4): 6053-6059.
[6]
Jing LZ,Zhang JY,Leng HJ, et al. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model [J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(4): 1119-1127.
[7]
Breitbart AS,Grande DA,Mason JM, et al. Gene-enhanced tissue engineering:applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene [J]. Ann Plast Surg, 1999, 42(5): 488-495.
[8]
Sun J,Hou XK,Li X, et al. Mosaicplasty associated with gene en hanced tissue engineering for the treatment of acute osteochondral defects in a goat model [J]. Arch Orthop Trauma Surg, 2009, 129(6): 757-771.
[9]
Sun J,Hou XK,Zheng YX. Restore a 9 mm diameter osteochondral defect with gene enhanced tissue engineering followed mosaicplasty in a goat model [J]. Acta Orthop Traumatol Turc, 2016, 50(4): 464-469.
[10]
Cucchiarini M,Madry H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo [J]. Gene Ther, 2014, 21(9): 811-819.
[11]
Sasako T,Ueki K. Insulin/IGF-1 signaling and aging [J]. Nihon Rinsho, 2016, 74(9): 1435-1440.
[12]
Li H,Ghazanfari R,Zacharaki D, et al. Isolation and characterization of primary bone marrow mesenchymal stromal cells [J]. Ann N Y Acad Sci, 2016, 1370(1): 109-118.
[13]
Garg P,Mazur MM,Buck AC, et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts [J]. Orthop Surg, 2017, 9(1): 13-19.
[14]
Nicholls AR,Holt RI. Growth Hormone and Insulin-Like Growth Factor-1[J]. Front Horm Res, 2016,47:101-114.
[15]
Patel R,Zhu MF,Robertson DM. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye [J]. Growth Hormone & IGF Research, 2018, 40: 69-73.
[16]
Ching SH,Bansal N,Bhandari B. Alginate gel particles-A review of production techniques and physical properties [J]. Crit Rev Food Sci Nutr, 2017, 57(6): 1133-1152.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[3] 王聪, 李云涛, 唐甜甜, 王鑫蕊, 吕鑫, 范志刚. 多基因检测对激素受体阳性、HER-2阴性乳腺癌新辅助化疗疗效预测的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 292-296.
[4] . 美国临床肿瘤学会关于乳腺癌胚系基因检测的相关建议[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 255-255.
[5] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[6] 奚卫, 王闻卿, 刘玥, 王亚楠, 许学斌. 胃肠炎继发脓毒症感染创伤弧菌ST14514的病原学诊断与文献病例回顾分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 293-302.
[7] 丁志翔, 于鹏, 段绍斌. 血浆BRAF基因检测对腹腔镜右半结肠癌D3根治术中行幽门淋巴结清扫的指导价值[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 570-573.
[8] 林英, 何洪, 杨琦, 姚兴伟, 马婧涵, 杨玉婷, 刘月红, 贾悦, 李长安. 联合宏基因组二代测序诊断普雷沃氏菌致肺脓肿1例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 625-629.
[9] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[10] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[11] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[14] 丁富贵, 吴泽涛, 董卫国. 家族性腺瘤性息肉病临床特征及生物信息学分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 512-518.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?