切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2019, Vol. 05 ›› Issue (05) : 291 -296. doi: 10.3877/cma.j.issn.2096-0263.2019.05.009

所属专题: 文献

基础研究

hIGF-I基因增强Mosaicplasty技术重建膝负重区大面积骨软骨复合缺损实验研究
张洁1, 黄辉2, 姜翠萍3, 孙一4, 李晓飞4, 张海宁4,(), 王英振4   
  1. 1. 261000 潍坊市中医院内分泌科
    2. 266000 青岛大学附属医院麻醉科
    3. 266000 青岛大学附属医院手术室
    4. 266000 青岛大学附属医院关节外科
  • 收稿日期:2019-06-08 出版日期:2019-10-05
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金项目资助课题(81672197)

Reconstruct large osteochondral defects of weight-bearing area by hIGF-I gene enhanced Mosaicplasty technique

Jie Zhang1, Hui Huang2, cuiping Jiang3, Yi Sun4, Xiaofei Li4, Haining Zhang4,(), Yingzhen Wang4   

  1. 1. Department of Endocrinology, Weifang Traditional Chinese Hosptial, Weifang 261000, China
    2. Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
    3. Operation room, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
    4. Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2019-06-08 Published:2019-10-05
  • Corresponding author: Haining Zhang
引用本文:

张洁, 黄辉, 姜翠萍, 孙一, 李晓飞, 张海宁, 王英振. hIGF-I基因增强Mosaicplasty技术重建膝负重区大面积骨软骨复合缺损实验研究[J]. 中华老年骨科与康复电子杂志, 2019, 05(05): 291-296.

Jie Zhang, Hui Huang, cuiping Jiang, Yi Sun, Xiaofei Li, Haining Zhang, Yingzhen Wang. Reconstruct large osteochondral defects of weight-bearing area by hIGF-I gene enhanced Mosaicplasty technique[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2019, 05(05): 291-296.

目的

研究hIGF-I基因增强组织工程提高Mosaicplasty修复大面积骨软骨缺损的修复质量,改善骨软骨的整合。

方法

制造山羊膝关节股骨髁大面积骨软骨缺损模型,使用自制Mosaicplasty器械,植入2 mm直径骨软骨柱镶嵌充填缺损,以hIGF-I基因转染的骨髓基质干细胞复合可注射藻酸钙凝胶填充残余缺损。同时设立未转染hIGF-I基因的骨髓基质干细胞组、Mosaicplasty组和对照组。术后4 w、8 w、16 w处死动物,行大体观察、光镜、电镜观察,磁共振检查比较修复效果。

结果

骨软骨缺损在16 w时IGF-I基因增强Mosaicplasty组移植物固定牢固,关节面平滑,移植物间界限消失,新生软骨组织类似于正常软骨,4~16 w修复效果逐渐改善,优于其他各组。光镜观察见移植的骨软骨生长良好,与新生软骨组织紧密相连,新生的软骨细胞排列规整,细胞外基质分布均一。对照组无明显修复。MRI观察类似大体观察结果。

结论

使用转染hIGF-I基因的骨髓基质干细胞复合可注射藻酸钙凝胶可促进Mosaicplasty后骨软骨的整合,改善其修复效果。

Objective

To investigate the outcome of hIGF-I gene enhanced Mosaicplasty to repair large-sized osteochondral compound defects.

Methods

Osteochondral defects were created on the femoral condyle with the customed Mosaicplasty instruments in a diameter of 6 mm. Osteochondral plugs were harvested around the intercondylar fossa or intertrochlea groove, and pressed into the recipient sites by special instruments in a mosaic mode. hIGF-I gene enhanced tissue engineering was then applied to fill the "dead space" after Mosaicplasty. From 4 to 16 weeks postoperatively, the animals were sacrificed and the specimens were investigated in gross and under electromicroscopy as well as MRI detection.

Results

The transplanted subchondral bone and superficial cartilage was integrated hardly with each other or with recipient sites in hIGF-I enhanced Mosaicplasty groups. The quality and appearance of the transplanted and regenerated cartilage was similar to normal hyaline cartilage. Under microscopy, the regenerated cartilage was integrated with neighbor tightly in regular arrange. ECM distributed evenly and deeply stained by alcian blue. MRI analysis also demonstrated the healing process between the subchondral bone other than the contrast groups. The effectiveness of the GETE modified Mosaicplasty groups was apparently better than BMSCs modified Mosaicplasty groups and contrast groups.

Conclusions

hIGF-I gene enhanced tissue engineering can ameliorate the outcome of Mosaicplasty to repair the osteochondral defects in large size.

图2 hIGF-I-BMSCs-Mosaicplasty组新生软骨细胞排列密集,基质着色深。
图6 扫描电镜观测可见修复组织表面平滑,纤维排列规整。
图8 MRI观察hIGF-I-BMSCs-Mosaicplasty组软骨层厚度均一,较平滑光整。
[1]
Baltzer AW,Ostapczuk MS,Terheiden HP, et al. Good short-to medium-term results after osteochondral autograft transplantation(OAT)in middle-aged patients with focal,non-traumatic osteochondral lesions of the knee [J]. Orthop Traumatol Surg Res, 2016, 102(7): 879-884.
[2]
De Almeida LO,Da S,De Mello GG, et al. Surgical treatment of osteochondral lesions of the knee by means of mosaicplasty [J]. Rev Bras Ortop, 2015, 45(2): 166-173.
[3]
Robert H. Chondral repair of the knee joint using mosaicplasty [J]. Orthop Traumatol Surg Res, 2011, 97(4): 418-429.
[4]
Mccoy B,Miniaci A. Osteochondral autograft transplantation/mosaicplasty [J]. J Knee Surg, 2012, 25(2): 99-108.
[5]
Ma X,Sun Y,Cheng XG, et al. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation [J]. Int J Clin Exp Med, 2015, 8(4): 6053-6059.
[6]
Jing LZ,Zhang JY,Leng HJ, et al. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model [J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(4): 1119-1127.
[7]
Breitbart AS,Grande DA,Mason JM, et al. Gene-enhanced tissue engineering:applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene [J]. Ann Plast Surg, 1999, 42(5): 488-495.
[8]
Sun J,Hou XK,Li X, et al. Mosaicplasty associated with gene en hanced tissue engineering for the treatment of acute osteochondral defects in a goat model [J]. Arch Orthop Trauma Surg, 2009, 129(6): 757-771.
[9]
Sun J,Hou XK,Zheng YX. Restore a 9 mm diameter osteochondral defect with gene enhanced tissue engineering followed mosaicplasty in a goat model [J]. Acta Orthop Traumatol Turc, 2016, 50(4): 464-469.
[10]
Cucchiarini M,Madry H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo [J]. Gene Ther, 2014, 21(9): 811-819.
[11]
Sasako T,Ueki K. Insulin/IGF-1 signaling and aging [J]. Nihon Rinsho, 2016, 74(9): 1435-1440.
[12]
Li H,Ghazanfari R,Zacharaki D, et al. Isolation and characterization of primary bone marrow mesenchymal stromal cells [J]. Ann N Y Acad Sci, 2016, 1370(1): 109-118.
[13]
Garg P,Mazur MM,Buck AC, et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts [J]. Orthop Surg, 2017, 9(1): 13-19.
[14]
Nicholls AR,Holt RI. Growth Hormone and Insulin-Like Growth Factor-1[J]. Front Horm Res, 2016,47:101-114.
[15]
Patel R,Zhu MF,Robertson DM. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye [J]. Growth Hormone & IGF Research, 2018, 40: 69-73.
[16]
Ching SH,Bansal N,Bhandari B. Alginate gel particles-A review of production techniques and physical properties [J]. Crit Rev Food Sci Nutr, 2017, 57(6): 1133-1152.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[7] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[8] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[9] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[10] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[11] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
阅读次数
全文


摘要