切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 75 -81. doi: 10.3877/cma.j.issn.2096-0263.2019.02.003

所属专题: 文献

基础研究

重组人骨形态发生蛋白-2质粒转染诱导人脐血间充质干细胞软骨分化研究
李大伟1, 孙一1, 姜翠萍2, 丛文斌3, 张海宁1,()   
  1. 1. 266000 青岛大学附属医院关节外科
    2. 266000 青岛大学附属医院手术室
    3. 266000 青岛大学附属医院放射科
  • 收稿日期:2018-09-25 出版日期:2019-04-05
  • 通信作者: 张海宁
  • 基金资助:
    国家自然科学基金(81672197)

Research on human umbilical cord bloodmesenchymal stem cells transfected with the gene of human bone morphogenetic protein-2

Dawei Li1, Yi Sun1, Cuiping Jiang2, Wenbin Cong3, Haining Zhang1,()   

  1. 1. Department of Joint Surgery, the Affiliated Hospital of Qingdao University, QingDao 266000, China
    2. Operating Room, the Affiliated Hospital of Qingdao University, QingDao 266000, China
    3. Radiology, the Affiliated Hospital of Qingdao University, QingDao 266000, China
  • Received:2018-09-25 Published:2019-04-05
  • Corresponding author: Haining Zhang
引用本文:

李大伟, 孙一, 姜翠萍, 丛文斌, 张海宁. 重组人骨形态发生蛋白-2质粒转染诱导人脐血间充质干细胞软骨分化研究[J/OL]. 中华老年骨科与康复电子杂志, 2019, 05(02): 75-81.

Dawei Li, Yi Sun, Cuiping Jiang, Wenbin Cong, Haining Zhang. Research on human umbilical cord bloodmesenchymal stem cells transfected with the gene of human bone morphogenetic protein-2[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2019, 05(02): 75-81.

目的

探究从人脐血中提取间充质干细胞,重组质粒pIRES2-EGFP-hBMP-2转染干细胞并诱导其成软骨化的可能性。

方法

采用密度梯度离心方法获取脐带血中细胞,依据贴壁时间不同获得间充质干细胞,流式细胞仪检测表面抗原表达鉴定细胞;然后把重组有pIRES2-EGFP-hBMP-2的质粒导入间充质干细胞,观察EGFP的表达;ELISA方法检测在不同时间收集的培养基上清中hBMP-2蛋白含量,采用免疫荧光和RT-PCR方法检测目的蛋白和基因表达。转染成功后继续培养细胞2 w,免疫组化检测细胞Ⅱ型胶原的表达和RT-PCR检测软骨特异性标志物软骨连接蛋白(CRLT1)的表达。

结果

两种方法可以获取人脐血间充质干细胞,流式细胞术鉴定发现CD90、CD105、CD146高表达,CD34、CD45、Anti-HLA-DR不表达。非脂质载体包裹重组质粒pIRES2-EGFP-hBMP-2可成功导入脐血间充质干细胞,转染率为(27.7±7.6)%。ELISA检测实验组和对照组hBMP-2的表达结果有统计学差异(t=3.355,P<0.01)。RT-PCR结果表明hBMP-2基因稳定转录,免疫荧光标记hBMP-2蛋白呈红色荧光。Ⅱ型胶原免疫组化染色示部分细胞被染成棕黄色,RT-PCR结果表明加入转染后的干细胞组CRLT1的表达量比未转染的干细胞组高(t=59.700,P<0.05)。

结论

重组hBMP-2基因可以成功转染人脐血间充质干细胞并在胞内稳定表达,且有hBMP-2分泌,并可促进其表达Ⅱ型胶原蛋白及软骨连接蛋白,可向软骨细胞化诱导。

Objective

To gain mesenchymal stem cells from humanumbilical cord blood and transfect the recombinant plasmid pIRES2-EGFP-hBMP-2 into human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) with liposome and to induce hUCB-MSCs osteoblastization.

Methods

Separated cells from human umbilical cord blood with density gradient centrifugation, and hUCB-MSCs were gained with adherent method, using flow cytometry to identify the surface markers of hUCB-MSCs. Transfected recombinate plasmid pIRES2-EGFP-hBMP-2 into the third generation hUCB-MSCs with X-treme GENE HP DNA Transfection reagent, then detected the intensity of EGFP. Collected the medium at different time after transfection and the hBMP-2 content in the medium was measured by ELISA. Use immunofluorescent to locate the existence of hBMP-2 within the cells and RT-PCR techniques to measure the transcription of the hBMP-2 gene. Two weeks after transfection, immunohistochemistry were used to detect the type Ⅱ collagen for discovering the possible changes of hUCB-MSCs.

Results

HUCB-MSCs could be isolated from blood in umbilical cord by density gradient centrifugation and the different ability of adherence. Flow cytometry showed that the hUCB-MSCs positively expressed CD90, CD105 and CD146, and did not express CD34, CD45 and Anti-HLA-DR. The recombinant plasmid pIRES2-EGFP-hBMP-2 was successfully fused into umbilical cord blood mesenchymal stem cells, and the fusion rate was (27.7±7.6)%. The ELISA test compared the expression of hBMP-2 between the experimental group and the control group, P<0.01 showed a statistically significant difference. RT-PCR results showed that the hBMP-2 gene was stably transcribed and the immunofluorescently labeled hBMP-2 protein showed red fluorescence. Immunohistochemical staining of type Ⅱ collagen showed that some cells were browned. RT-PCR results showed that the expression of CRLT1 in umbilical cord blood mesenchymal stem cells transfected with BMP-2 was higher than that in untransfected umbilical cord blood mesenchymal stem cells and human synovial fibrosis group (P<0.05).

Conclusions

Recombinat plasmid pIRES2-EGFP-BMP-2 coated with X-treme CENE can be successfully transfected into hUCB-MSCs. Both the marker gene and objectivegene can be transcribed and expressed in hUCB-MSCs, and cells can synthesis hBMP-2, which stimulates the hUCB-MSCs'differentiation towards to chondrocytes.

图1 细胞贴壁7 d后,生长状态良好,呈长梭状(100X)
图2 流式细胞仪鉴定:CD34(0.13%),CD45(0.14%),CD90(99.88%),CD105(99.95%),CD146(73.91%),Anti-HLA-DR(1.57%)
图3~5 荧光显微镜下绿荧光蛋白(EGFP)的表达(200X)。图3 换液后EGFP表达情况,亮度较强;图4 48 h EGFP表达达到最大数目;图5 72 hEGFP强度降低
图11 ELISA检验结果,转染组BMP-2含量明显高于未转染组,转染组在转染后BMP-2蛋白量持续增高,峰值出现在转染后48 h,为3 006 pg/ml,其后开始下降,但仍高于对照组其他时段
表1 加入重组基因后不同时间点对照组与实验组hBMP-2蛋白浓度(pg/ml,±s
1
Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets [J]. Arthritis Rheum, 2001, 44(6):1237-1247.
2
胥少汀,葛宝丰,徐印坎,等.实用骨科学[M].北京:人民军医出版社, 2015: 1671-1677.
3
Bhardwaj N, Devi D, Mandal BB. Tissue-Engineered cartilage: the crossroads of biomaterials, cells and stimulating factors [J]. Macromol Biosci, 2015, 15(2):153-182.
4
Yamasaki S, Mera H, Itokazu M, et al. Cartilage repair with autologous bone marrow mesenchymal stem cell transplantation: review of preclinical and clinical studies [J]. Cartilage, 2014, 5(4):196-202.
5
Odabas S, Elçin AE, Elçin YM. Isolation and characterization of mesenchymal stem cells [J]. Methods Mol Biol, 2014, 1109:47-63.
6
Hassan G, Kasem I, Soukkarieh C, et al. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum [J]. Int J Stem Cells, 2017, 10(2):184-192.
7
Dufrane D. Impact of age on human adipose stem cells for bone tissue engineering [J]. Cell Transplant, 2017, 26(9, SI):1496-1504.
8
Singh J, Mann A, Kumar D, et al. Cultured Buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells [J]. In Vitro Cell Dev Biol Anim, 2013, 49(6):408-416.
9
Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine [J]. Cell Transplant, 2014, 23(4/5):493-496.
10
Kim JS, Lee HK, Kim MR, et al. Differentially expressed proteins of mesenchymal stem cells derived from human cord blood (hUCB) during osteogenic differentiation [J]. Biosci Biotechnol Biochem, 2008, 72(9):2309-2317.
11
Erices A, Conget P, Mingudl JJ, et al. Meaenchymaal progenitor cells in human umbilical cord blood [J]. Br J Heamatol, 2000, 109(1):235-242.
12
Cardenas C, Kwon JY, Maeng YS. Human cord Blood-Derived CD133+/C-Kit(+)/Lin(-) cells have bipotential ability to differentiate into mesenchymal stem cells and outgrowth endothelial cells [J]. Stem Cells Int, 2016:7162160.
13
Hua J, Gong J, Meng HB, et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: Proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow [J]. Cell Biol Int, 2014, 38(2):198-210.
14
Lee DH, Ahn Y, Kim SU, et al. Targeting rat brainstem glioma using human neural stem cells and human messenchymal stem cells [J]. Clin Cancer Res, 2009, 15(15):4925-4934
15
Jin HJ, Park SK, Oh W, et al. Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2009, 381(4):676-681.
16
Mohyeddin Bonab MA, Alimoghaddam KA, Goliaei ZA, et al. Which factors can affect cord blood variables [J]. Transfusion, 2004, 44(5):690-693.
17
Romanov YA, Svintsitskaya VA, Smimov VN. Searching for alternative sources of postnatal human mesenehymal stem cells: candidate MSC-like cells from umbilical cord [J]. Stem Cells, 2003, 21(1):105-110.
18
黄宏宇,刘国平,段莉,等.人脐血间充质干细胞培养方法的比较[J].中国组织工程研究, 2014, 18(37):5961-5966.
19
Feldmann RE, Bieback K, Maurer MH, et al. Stem cell proteomes: A profile of human mesenchymal stem cells derived from umbilical cord blood [J]. Electrophoresis, 2005, 26(14):2749-2758.
20
郑德宇,刘建生,杨依勇,等.成骨诱导后的脐血间充质干细胞与β-磷酸三钙复合植骨材料对兔颅骨缺损的修复作用[J].西安交通大学学报:医学版, 2011, 32(4):441-444, 476.
21
Wang FS, Yang KD, Wang CJ, et al. Shockwave stimualates Oxygen radical-mediated osteogenesis of the mesenehymal cells from human umbilical cord blood [J]. J Bone Miner Res, 2004, 19(6):973-982.
22
杨依勇,朱慧敏,秦书俭,等.脐带血间充质干细胞的成骨诱导及结果检测[J].解剖学杂志, 2010, 33(5):692-694.
23
Gomez-Leduc T, Hervieu M, Legendre FA, et al. Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering [J]. Sci Rep, 2016, 8(6):32786.
24
Li H, Nie B, Du Z, et al. Bacitracin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by stimulating the bone morphogenetic protein-2/Smad axis [J]. Biomed Pharmacother, 2018, 103:588-597.
25
Bougioukli S, Sugiyama O, Pannell W, et al. Gene therapy for bone repair using human cells: superior osteogenic potential of bone morphogenetic protein 2-Transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow [J]. Hum Gene Ther, 2018, 29(4):507-519.
26
Nasrabadi D, Rezaeiani S, Eslaminejad MB, et al. Improved protocol for chondrogenic differentiation of bone marrow derived mesenchymal stem cells-Effect of PTHrP and FGF-2 on TGF beta 1/BMP2-Induced chondrocytes hypertrophy [J]. Stem Cell Rev, 2018, 14(5):755-766.
27
徐建民,王兆朋,王恒孝.骨形态发生蛋白-2在兔骨折愈合过程中的作用[J].中国矫形外科杂志, 2016, 24(10):920-925.
28
Deshmukh SN, Dive AM, Moharil R, et al. Enigmatic insight into collagen [J]. J Oral Maxillofac Pathol, 2016, 20(2):276-283.
29
Lindenmair A, Nürnberger S, Stadler G, et.al. Intact human amniotic membrane differentiated towards the chondrogenic lineage [J]. Cell Tissue Bank, 2014, 15(2):213-225.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[4] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[5] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[11] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[12] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[13] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[14] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要