切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (05) : 287 -295. doi: 10.3877/cma.j.issn.2096-0263.2018.05.007

所属专题: 文献

基础研究

糖基化改装人脂肪来源干细胞促进其骨髓归巢及成骨的研究
金鑫1, 王宝泉2, 童伟3, 刘先哲3, 张晓光3, 方家瑞3, 李松3, 张玉琼3, Rabi M Dhakal3, 汪健3, 杨述华3, 田洪涛3,()   
  1. 1. 430022 武汉,华中科技大学同济医学院附属协和医院骨科
    2. 053500 衡水,景县人民医院
  • 收稿日期:2018-08-03 出版日期:2018-10-05
  • 通信作者: 田洪涛
  • 基金资助:
    国家自然科学基金委青年项目(81672235); 面上项目(8187090829)

Surface fucosylation of human adipose-derived stem cells (ASCs) augments homing to bone

Xin Jin1, Baoquan Wang2, Wei Tong3, Xianzhe Liu3, Xiaoguang Zhang3, Jiarui Fang3, Song Li3, Yuqiong Zhang3, Rabi M Dhakal3, Jian Wang3, Shuhua Yang3, Hongtao Tian3,()   

  1. 1. Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Jingxian People's Hospital, Hengshui 053500, China
    2. Jingxian People's Hospital, Hengshui 053500, China
    3. Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2018-08-03 Published:2018-10-05
  • Corresponding author: Hongtao Tian
  • About author:
    Corresponding author: Tian Hongtao, Email:
引用本文:

金鑫, 王宝泉, 童伟, 刘先哲, 张晓光, 方家瑞, 李松, 张玉琼, Rabi M Dhakal, 汪健, 杨述华, 田洪涛. 糖基化改装人脂肪来源干细胞促进其骨髓归巢及成骨的研究[J]. 中华老年骨科与康复电子杂志, 2018, 04(05): 287-295.

Xin Jin, Baoquan Wang, Wei Tong, Xianzhe Liu, Xiaoguang Zhang, Jiarui Fang, Song Li, Yuqiong Zhang, Rabi M Dhakal, Jian Wang, Shuhua Yang, Hongtao Tian. Surface fucosylation of human adipose-derived stem cells (ASCs) augments homing to bone[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(05): 287-295.

目的

探讨脂肪来源干细胞表达的CD44,可以被糖基化技术进行修饰,成为造血干细胞E/L选择素配体(HCELL),进而可有效的骨髓归巢并原位分化成骨。

方法

应用α-1,3-唾液盐藻糖酶:FTV以及其底物GDP-海藻糖处理人脂肪来源干细胞,使该细胞表面CD44分子糖基化为HCELL,检测其增殖、分化等细胞生物学特性。平行平板流动腔试验以及免疫荧光染色验证其小鼠体内归巢及成骨能力。

结果

α-1,3-岩藻糖基化的hASC在不损害细胞活力的情况下表达HCELL,能够诱导血管内皮细胞表面E-选择素与其结合,并在剪切力条件下,使hASCs与内皮E-选择素产生强大的滚动粘附效应,促进hASCs迁移到骨髓中,并在小鼠骨髓中产生人骨样细胞。

结论

本研究证明糖基化技术能够增强干细胞的骨髓归巢能力,且不对干细胞自身细胞活性产生负向作用。

Objective

To investigate whether the expression of CD44 on adipose-derived stem cells can be modified by glycosylation technology to become hematopoietic stem cell E/L selectin ligand (HCELL), which effectively enhance bone marrow homing and differentiate into bone.

Methods

α-1,3-fucosyltransferase (e.g., fucosyltransferase V (FTV) and its substrate GDP-fucose were used to treat human adipose-derived stem cells, so that the cell surface CD44 molecule glycosylated and turned into HCELL, and its cell biology characteristics such as proliferation and differentiation were detected. Parallel plate flow chamber test and immunofluorescence staining confirmed the homing and osteogenic ability of infusion cellls.

Results

α-1,3-fucosylated hASCs express HCELL without impairing cell viability can induce E-selectin binding on vascular endothelial cells, and make hASCs and endothelials under shear conditions. E-selectin produces a powerful rolling adhesion effect that promotes the migration of hASCs into the bone marrow and produces human osteoblast-lineage cells in the bone marrow of mice.

Conclusion

This study demonstrates that glycosylation technology can enhance the bone marrow homing ability of stem cells, and does not have a negative effect on stem cell viability.

图1 hASCs归巢分子检测
图2~5 α-1,3-盐藻糖基化酶处理hASCs表面CD44分子得到HCELL,未改变CD44分子表型
图10 FTV糖基化hASCs后为未改变其增殖能力
图17 盐藻糖基化的hASCs骨髓归巢能力增强
图18~29 HCELL+hASCs回输小鼠体内后能够归巢到骨髓并分化成骨,箭头代表骨表面HCELL+hASCs来源的骨钙素染色阳性成骨细胞
[1]
肖建德.实用骨质疏松学[M].北京:科学出版社, 2004.
[2]
Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines [J]. Stem Cells, 2001, 19(3): 193-204.
[3]
Yu JY, Vodyanik MA, Smuga-Otto KA, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858): 1917-1920.
[4]
Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue [J]. Cell Physiol Biochem, 2004, 14(4/6): 311-324.
[5]
Zuk PA. The adipose-derived stem cell: looking back and looking ahead [J]. Mol Biol Cell, 2010, 21(11): 1783-1787.
[6]
Levi B, James AW, Nelson ER, et al. Studies in Adipose-Derived stromal cells: migration and participation in repair of cranial injury after systemic injection [J]. Plast Reconstr Surg, 2011, 127(3): 1130-1140.
[7]
Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells [J]. Circulation, 2004, 109(10): 1292-1298.
[8]
González MA, Gonzalez-Rey E, Rico L, et al. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses [J]. Gastroenterology, 2009, 136(3): 978-989.
[9]
Meyerrose TE, De Ugarte DA, Hofling A, et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models [J]. Stem Cells, 2007, 25(1): 220-227.
[10]
Liao XB, Li F, Wang X, et al. Distribution of murine adipose-derived mesenchymal stem cells in vivo following transplantation in developing mice [J]. Stem Cells Dev, 2008, 17(2): 303-314.
[11]
Bailey AM, Lawrence MB, Shang HL, et al. Agent-Based model of therapeutic Adipose-Derived stromal cell trafficking during ischemia predicts ability to roll on P-Selectin [J]. PLoS Comput Biol, 2009, 5(2): 1000294.
[12]
Yanez R, Lamana ML, Garcia-Castro JA, et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease [J]. Stem Cells, 2006, 24(11): 2582-2591.
[13]
Thangarajah H, Vial IN, Chang E, et al. IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia [J]. Stem Cells, 2009, 27(1): 266-274.
[14]
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details [J]. Cell Stem Cell, 2009, 4(3): 206-216.
[15]
Sackstein R. The lymphocyte homing receptors:gatekeepers of the multistep paradigm [J]. Curr Opin Hematol, 2005, 12(6): 444-450.
[16]
Frenette PS, Subbarao S, Mazo IB, et al. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow [J]. Proc Natl AcadSci, 1998, 95(24): 14423-14428.
[17]
Katayama Y, Hidalgo A, Furie BC, et al. PSGL-1 participates in E-selectinar cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow [J]. Blood, 2003, 102(6): 2060-2067.
[18]
Sipkins DA, Wei XB, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment [J]. Nature, 2005, 435(744): 969-973.
[19]
Kannagi R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes [J]. Curr Opin Struct Biol, 2002, 12(5): 599-608.
[20]
Polley MJ, Phillips ML, Wayner E, et al. CD62 and endothelial cell-leukocyte adhesion molecule 1(ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x [J]. Proc Natl Acad Sci U S A, 1991, 88(14): 6224-6228.
[21]
Sackstein R. The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing [J]. J Investig Dermatol Symp Proc, 2004, 9(3): 215-223.
[22]
Dimitroff CJ, Lee JY, Rafii S, et al. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells [J]. J Cell Biol, 2001, 153(6): 1277-1286.
[23]
Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance [J]. Mol Ther, 2008, 16(3): 571-579.
[24]
Sarkar D, Spencer JA, Phillips JA, et al. Engineered cell homing [J]. Blood, 2011, 118(25): 184-191.
[25]
Zhang D, Fan GC, Zhou X, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium [J]. J Mol Cell Cardiol, 2008, 44(2): 281-292.
[26]
Wang J, Ye YP, Tian HT, et al. In vitro osteogenesis of human adipose-derived stem cells by coculture with human umbilical vein endothelial cells [J]. Biochem Biophys Res Commun, 2011, 412(1): 143-149.
[27]
Fuhlbrigge RC, Kieffer JD, Armerding D, et al. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells [J]. Nature, 1997, 389(6654): 978-981.
[28]
Dimitroff C, Lee J, Fuhlbrigge R, et al. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13841-13846.
[29]
Chamberlain G, Fox J, Ashton B, et al. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing [J]. Stem Cells, 2007, 25(11): 2739-2749.
[30]
Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects [J]. J Clin Invest, 2005, 115(12): 3318-3325.
[31]
Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? [J]. Nat Clin Pract Rheumatol, 2006, 2(1): 35-43.
[32]
Sackstein R. Engineering cellular trafficking via glycosyltransferase-programmed stereosubstitution [J]. Ann N Y Acad Sci, 2012, 1253: 193-200.
[1] 谢卓晏, 罗远利, 乔斌, 李锦瑞, 周志益, 王志刚, 任建丽. 肽功能化载GOD智能响应型相变纳米粒用于乳腺癌超声诊疗的实验研究[J]. 中华医学超声杂志(电子版), 2022, 19(08): 837-846.
[2] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[3] 廖薇, 佘志玲, 张吉华, 于明明. 孕妇人体质量指数、C反应蛋白和糖化血红蛋白与妊娠期糖尿病的关系及预测意义[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(04): 410-414.
[4] 徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.
[5] 何玲玲, 张成, 周蓉蓉, 魏红山. 糖基化修饰在包膜病毒感染过程中的作用[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 1-6.
[6] 郭金英, 李惠霖, 马良, 王晋霞, 张开红. 人高迁移率族蛋白B1、晚期糖基化终产物受体和C反应蛋白与脑外伤术后肺部感染严重程度的相关性及对预后的评估价值[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 308-314.
[7] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[8] 陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 375-381.
[9] 吴斯媛, 艾毅龙. 两种生物膜材料在牙周辅助加速成骨正畸治疗技术中的骨增量研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 79-84.
[10] 赵德路, 铁朝荣, 孙珍, 王新, 尹苗. 锶及海藻酸盐水凝胶在骨组织工程中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(01): 51-58.
[11] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[12] 吴顺, 刘雪君, 张一帆, 孙家明, 郭亮. 浓缩血小板提高冻存脂肪来源间充质干细胞活性的研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 321-328.
[13] 齐婷婷, 许晓明, 夏云龙, 郭永珍, 樊苗苗, 贺媛, 陈迈, 陶凌, 闫文俊, 范延红. 静脉输注间充质干细胞治疗缺血性心脏病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 105-109.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 高俊, 蔡林秀, 张曦, 王娟, 李春梅, 胡继红. 老年髋部骨折患者血清戊糖素、RAGE、sRAGE水平与骨密度的关系[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 105-110.
阅读次数
全文


摘要