切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (01) : 57 -61. doi: 10.3877/cma.j.issn.2096-0263.2018.01.013

所属专题: 文献

综述

MicroRNA与细胞自噬调控
刘勃1, 陈忠斌1, 张立海1,(), 唐佩福1   
  1. 1. 100853 北京,解放军总医院骨科
  • 收稿日期:2015-10-09 出版日期:2018-02-05
  • 通信作者: 张立海
  • 基金资助:
    青年科学基金(81401809)

Micro-RNA and autophagy regulation

Bo Liu1, Zhongbin Chen1, Lihai Zhang1,(), Peifu Tang1   

  1. 1. Department of Orthopedics, Chinese PLA general hospital, Beijing 100853, China
  • Received:2015-10-09 Published:2018-02-05
  • Corresponding author: Lihai Zhang
  • About author:
    Corresponding Author: Zhang Lihai, Email:
引用本文:

刘勃, 陈忠斌, 张立海, 唐佩福. MicroRNA与细胞自噬调控[J/OL]. 中华老年骨科与康复电子杂志, 2018, 04(01): 57-61.

Bo Liu, Zhongbin Chen, Lihai Zhang, Peifu Tang. Micro-RNA and autophagy regulation[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(01): 57-61.

细胞自噬是进化过程中高度保守的物质降解再循环过程,是细胞将异常蛋白质、受损细胞器转运至溶酶体降解再利用的活动。自噬过程受到精密的调控。自噬功能障碍与神经退行性疾病、心血管疾病、肿瘤、骨代谢疾病、衰老等的发生有关。MicroRNA是一类对基因进行转录后修饰的非编码单链小RNA。越来越多的证据表明,MicroRNA可以通过调控自噬相关基因及其调节因子来影响自噬水平,是治疗自噬功能障碍所引发疾病的潜在靶点。本文对有关MicroRNA参与自噬调控的最新动态进行综述。

Autophagy is a highly conserved cellular self-digestion and catabolism process in which proteins, damaged organelles in the cytoplasm were delivered to the lysosome for degradation. The dysregulation of autophagy can induce many pathological disorders, including neurodegenerative diseases, heart diseases, cancer, bone metabolic diseases and senility. It’s under precise control. MicroRNA is a classic functional small RNA molecules that regulate target genes at a post-transcriptional level. More and more studies indicated that microRNAs are involved in the regulation of autophagy-related genes and other regulatory factors. It is also a potential target in treating disregulated autophagy diseases by changing the level of autophagy through related genes and factors regulation. This review aims to summarize the latest reports on microRNA and autophagy regulation.

图2 自噬调控信号通路
1
Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging [J]. J Biol Chem, 2013, 288(24): 17432-17440.
2
Sambandam Y, Townsend MT, Pierce JJ, et al. Microgravity control of autophagy modulates osteoclastogenesis [J]. Bone, 2014, 61: 125-131.
3
Yang GE, Duan X, Lin D, et al. Rapamycin-induced autophagy activity promotes bone fracture healing in rats [J]. Exp Ther Med, 2015, 10(4): 1327-1333.
4
Zhao S Lu N, Chai Y, Yu X. Rapamycin inhibits tumor growth of human osteosarcomas [J]. J BUON, 2015, 20(2): 588-594.
5
Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells [J]. FEBS Lett, 2014, 588(24): 4761-4768.
6
Wei F Liu Y, Guo Y, Xiang a, Wang G, Xue X, Lu Z. miR-99b-targeted mTOR induction contributes to irradiation resistance in pancreatic cancer [J]. Mol Cancer, 2013, 25(12): 81.
7
Chen Y, Liersch R, Detmar M. The miR-290-295 cluster suppresses autophagic cell death of melanoma cells [J]. Sci Rep, 2012, 2: 808.
8
Jin Y, Tymen SD, Chen D, et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing [J]. PLoS One, 2013, 8(5): e64434.
9
Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy [J]. Nat Cell Biol, 2010, 12(9): 814-822.
10
Levine B, Kroemer G. Autophagy in the pathogenesis of disease [J]. Cell, 2008, 132(1): 27-42.
11
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues [J]. Cell, 2011, 147(4): 728-741.
12
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging [J]. Cell, 2011, 146(5): 682-695.
13
Todde V, Veenhuis M, Van Der Klei IJ. Autophagy: principles and significance in health and disease [J]. Biochim Biophys Acta, 2009, 1792(1): 3-13.
14
Bursch W. The autophagosomal-lysosomal compartment in programmed cell death [J]. Cell Death Differ, 2001, 8(6): 569-581.
15
Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism [J]. Oncogene, 2004, 23(16): 2891-2906.
16
Nelson DA, White E. Exploiting different ways to die [J]. Genes Dev, 2004, 18(11): 1223-1226.
17
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing [J]. EMBO J, 2000, 19(21): 5720-5728.
18
Alva AS, Gultekin SH, Baehrecke EH. Autophagy in human tumors: cell survival or death? [J]. Cell Death Differ, 2004, 11(9): 1046-1048.
19
Bauvy C, Gane P, Arico S, et al. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29 [J]. Exp Cell Res, 2001, 268(2): 139-149.
20
Lipinski MM, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease [J]. Proc Natl Acad Sci U S A, 2010, 107(32): 14164-14169.
21
Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in Life extends lifespan in genetically heterogeneous mice [J]. Nature, 2009, 460(7253): 392-395.
22
Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice [J]. Science, 2011, 334(6062): 1573-1577.
23
Yang Y, Coleman M, Zhang LH, et al. Autophagy in axonal and dendritic degeneration [J]. Trends Neurosci, 2013, 36(7): 418-428.
24
Liberski PP, Sikorska B, Hauw JJ, et al. Ultrastructural characteristics (or evaluation) of Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies or prion diseases [J]. Ultrastruct Pathol, 2010, 34(6): 351-361.
25
Nixon RA. The role of autophagy in neurodegenerative disease [J]. Nat Med, 2013, 19(8): 983-997.
26
Nassif M, Hetz C. Targeting autophagy in ALS: a complex mission [J]. Autophagy, 2011, 7(4): 450-453.
27
Crippa V, Sau D, Rusmini P, et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS) [J]. Hum Mol Genet, 2010, 19(17): 3440-3456.
28
Stern ST, Johnson DN. Role for nanomaterial-autophagy interaction in neurodegenerative disease [J]. Autophagy, 2008, 4(8): 1097-1100.
29
Shacka JJ, Roth KA, Zhang J. The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy [J]. Front Biosci, 2008, 13: 718-736.
30
Boya P Reggiori F, Codogno P. Emerging regulation and functions of autophagy [J]. Nat Cell Biol, 2013, 15(7): 713-720.
31
Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism [J]. Rev Endocr Metab Disord, 2014, 15(1): 11-20.
32
Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress [J]. Nat Med, 2007, 13(5): 619-624.
33
Troncoso R, Miguel Vicencio J, Parra VA, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy [J]. Cardiovasc Res, 2012, 93(2): 320-329.
34
Manolagas SC, Parfitt AM. What old means to bone [J]. Trends in Endocrinol Metab, 2010, 21(6): 369-374.
35
Helfrich MH, Hocking LJ. Genetics and aetiology of Pagetic disorders of bone [J]. Arch Biochem Biophys, 2008, 473(2): 172-182.
36
Sanchez CP, He YZ. Bone growth during rapamycin therapy in young rats [J]. BMC Pediatr, 2009, 9(3): 486-492.
37
Cejka D, Hayer S, Niederreiter B, et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis [J]. Arthritis Rheum, 2010, 62(8): 2294-2302.
38
Whitehouse CA, Waters S, Marchbank KA, et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity [J]. Proc Natl Acad Sci U S A, 2010, 107(29): 12913-12918.
39
He XJ, Eberhart JK, Postlethwait JH. MicroRNAs and micromanaging the skeleton in disease, development and evolution [J]. J Cell Mol Med, 2009, 13(4): 606-618.
40
Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells [J]. Autophagy, 2009, 5(6): 816-823.
41
Su Z, Yang Z, Xu Y, et al. MicroRNAs in apoptosis, autophagy and necroptosis [J]. Oncotarget, 2015, 6(11): 8474-8490.
42
Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression [J]. Tumour Biol, 2015.[Epub ahead of print]
43
Sun KT, Chen MY, Tu MG, et al. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation [J]. Bone, 2015, 73: 145-153.
44
Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway [J]. RNA Biol, 2015, 12(3): 343-353.
45
Yao Y, Jia T, Pan Y, et al. Using a novel microRNA delivery system to inhibit osteoclastogenesis [J]. Int J Mol Sci, 2015, 16(4): 8337-8350.
46
M'baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, et al. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223 [M]. Biochim Biophys Acta, 2015, 1852(10): 2202-2212.
47
Xia Yu, Chen Kun, Zhang Hua, et al. MicroRNA-124 involves in ankylosing spondylitis by targeting ANTXR2 [J]. Mod Rheumatol, 2015, 25(5): 784-789.
48
Franceschetti T, Dole NS, Kessler CB, et al. Pathway analysis of microRNA expression profile during murine osteoclastogenesis [J]. PLoS One, 2014 9(9):107262.
49
You L, Gu W, Chen L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway [J]. Int J Clin Exp Pathol, 2014, 7(10): 7249-7261.
50
Yu S, Geng Q, Ma J, et al. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation [J]. Cell Death Dis, 2013, 4: e868.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[3] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[4] 张晋伟, 董永红, 王家璇. 基于GBD2021 数据库对中国与全球老年人疝疾病负担和健康不平等的分析比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 708-716.
[5] 詹济玮, 蔡柳春, 温琼娜, 郭石生, 温春妹, 温鹤明. 布地格福联合噻托溴铵治疗AECOPD 的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 823-826.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 周迪, 全志伟. 规范化胆囊良性疾病诊治流程减少胆囊癌误诊误治[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 749-753.
[8] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[9] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[10] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[11] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[12] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[13] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[14] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要