切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 379 -384. doi: 10.3877/cma.j.issn.2096-0263.2023.06.008

综述

肝酶代谢与骨关节炎相关性的研究进展
王旭, 师绍敏, 毛燕, 季上, 刘亚玲()   
  1. 050051 石家庄,河北医科大学第三医院皮肤科
  • 收稿日期:2022-12-30 出版日期:2023-12-05
  • 通信作者: 刘亚玲
  • 基金资助:
    河北省医学科学研究课题计划(20240028)

Metabolism of liver enzymes in osteoarthritis: a literature review

Xu Wang, Shaomin Shi, Yan Mao, Shang Ji, Yaling Liu()   

  1. Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
  • Received:2022-12-30 Published:2023-12-05
  • Corresponding author: Yaling Liu
引用本文:

王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.

Xu Wang, Shaomin Shi, Yan Mao, Shang Ji, Yaling Liu. Metabolism of liver enzymes in osteoarthritis: a literature review[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(06): 379-384.

骨关节炎(OA)是一种慢性炎症性关节疾病,其病理改变主要为软骨退行性变。社会老龄化的加剧使得OA的发病率和致残率逐步攀升,成为困扰人类健康的社会问题之一。近年来,人们对代谢异常与OA相关性的研究兴趣增加,出现了诸多代谢异常与OA相关联的研究成果。肝脏是人体代谢的核心器官,国内外一系列研究表明大量OA患者肝酶学存在异常,在OA的发生、发展中起重要作用。本文着眼于肝酶代谢在OA发生、发展中的作用及机制,对相关文献作一综述。

Osteoarthritis (OA) is a chronic inflammatory joint disease whose pathological changes are mainly degenerative changes of cartilage. The aggravation of social aging makes the incidence rate and disability rate of OA gradually rise, which has become one of the social problems puzzling human health. In recent years, there has been an increased interest in research on the correlation between metabolic abnormalities and OA, and many research results have emerged on the association between metabolic abnormalities and OA. The liver is the core organ of human metabolism, and a series of studies at home and abroad have shown that a large number of patients with OA have abnormal liver enzymology, which plays an important role in the occurrence and development of OA. In this paper, we focus on the role and mechanism of liver enzyme metabolism in the occurrence and development of OA and review the relevant literature.

表1 不同肝酶对机体细胞、骨及关节功能的影响
1
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study [J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
2
Deng YJ, Lu JQ, Li WL, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation [J]. Nat Commun, 2018, 9(1): 4564.
3
Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development [J]. Nat Rev Rheumatol, 2012, 8(2): 77-89.
4
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis [J]. NATURE REVIEWS DISEASE PRIMERS, 2016, 2: 16072.
5
Courties A, Sellam J, Berenbaum F. Metabolic syndrome-associated osteoarthritis [J]. Curr Opin Rheumatol, 2017, 29(2): 214-222.
6
Mobasheri A, Rayman MP, Gualillo O, et al. The role of metabolism in the pathogenesis of osteoarthritis [J]. Nat Rev Rheumatol, 2017, 13(5): 302-311.
7
Berenbaum F, Griffin TM, Liu-Bryan R. Review: metabolic regulation of inflammation in osteoarthritis [J]. Arthritis Rheumatol, 2017, 69(1): 9-21.
8
毛燕,师绍敏,王旭,等. γ-谷氨酰转肽酶在骨质破坏相关疾病中的研究进展[J].中华老年骨科与康复电子杂志, 2022, 08(2): 123-128.
9
Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology [J]. Curr Opin Pharmacol, 2016, 28: 8-13.
10
Mehana ESE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review [J]. Life Sci, 2019, 234: 116786.
11
Schittenhelm L, Hilkens CM, Morrison VL. β(2) integrins as regulators of dendritic cell, monocyte, and macrophage function [J]. Front Immunol, 2017, 8: 1866.
12
Ehirchiou D, Bernabei I, Chobaz V, et al. CD11b signaling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis [J]. Front Cell Dev Biol, 2020, 8: 611757.
13
Song CX, Liu SY, Zhu WT, et al. Excessive mechanical stretch-mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the Wnt/β-catenin signaling pathway [J]. Mol Med Rep, 2021, 24(2): 593.
14
Zhang ZYH, Lu L, Ye T, et al. Inhibition of semaphorin 4D/Plexin-B1 signaling inhibits the subchondral bone loss in early-stage osteoarthritis of the temporomandibular joint [J]. Arch Oral Biol, 2022, 135: 105365.
15
Park HM, Lee JH, Lee YJ. Positive association of serum alkaline phosphatase level with severe knee osteoarthritis: a nationwide Population-Based study [J]. Diagnostics (Basel), 2020, 10(12): 1016.
16
Seo MS, Shim JY, Lee YJ. Relationship between serum alkaline phosphatase level, C-reactive protein and leukocyte counts in adults aged 60 years or older [J]. Scand J Clin Lab Invest, 2019, 79(4): 233-237.
17
Lowe JR, Pickup ME, Dixon JS, et al. Gamma glutamyl transpeptidase levels in arthritis: a correlation with clinical and laboratory indices of disease activity [J]. Ann Rheum Dis, 1978, 37(5): 428-431.
18
Ishizuka Y, Moriwaki S, Kawahara-Hanaoka M, et al. Treatment with Anti-γ-Glutamyl transpeptidase antibody attenuates osteolysis in Collagen-Induced arthritis mice [J]. J Bone Miner Res, 2007, 22(12): 1933-1942.
19
Moriwaki S, Into T, Suzuki K, et al. γ-Glutamyltranspeptidase is an endogenous activator of toll-like receptor 4-mediated osteoclastogenesis [J]. Sci Rep, 2016, 6: 35930.
20
Hiramatsu K, Asaba Y, Takeshita SN, et al. Overexpression of gamma-glutamyltransferase in transgenic mice accelerates bone resorption and causes osteoporosis [J]. Endocrinology, 2007, 148(6): 2708-2715.
21
Yang X, Lv Z, Xie G, et al. Pre-administration of rats with Helicobacter pylori gamma-glutamyl-transpeptidase alleviates osteoarthritis [J]. Biotechnol Lett, 2018, 40(3): 521-526.
22
Freeman M. The aetiopathogenesis of osteoarthrosis [J]. British Journal of Occupational Therapy, 1972, 35(2): 83.
23
Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis [J]. Bone, 2012, 51(2): 249-257.
24
Ke J, Long X, Liu Y, et al. Role of NF-kappaB in TNF-alpha-induced COX-2 expres-sion in synovial fibroblasts [J]. J Dent Res, 2007, 86(4): 363-367.
25
Li HM, Guo HL, Xu C, et al. Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis [J]. Bone, 2020, 141: 115584.
26
Arra M, Swarnkar G, Ke K, et al. LDHA-mediated ROS Generation in chondrocytes is a potential therapeutic target for osteoarthritis [J]. Nat Commun, 2020, 11(1): 3427.
27
王志伟,索海强,梁寒光,等.不同来源的间充质干细胞在早期骨关节炎中治疗的特点比较及展望[J].中华老年骨科与康复电子杂志, 2020, 6(6): 364-369.
28
Ahmed MR, Mehmood A, Bhatti F, et al. Combination of ADMSC sandchondro-cytes reduce shypertrophy and improves the function alproperties of osteoarth [J]. Osteoarthritis Cartilage, 2014, 22(11): 1894-1901.
29
Eider J, Ahmetov II, Fedotovskaya ON, et al. CKM gene polymorphism in Russian and Polish rowers [J]. Russ J Genet, 2015, 51(3): 318-321.
30
Fernández-Torres J, Martínez-Nava GA, Zamudio-Cuevas Y, et al. Ancestral contribution of the muscle-specific creatine kinase (CKM) polymorphism rs4884 in the knee osteoarthritis risk: a preliminary study [J]. Clin Rheumatol, 2021, 40(1): 279-285.
31
Chilibeck PD, Kaviani M, Candow DG, et al. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis [J]. Open Access J Sports Med, 2017, 8: 213-226.
32
Neves MJ, Gualano B, Roschel H, et al. Beneficial effect of creatine supplementation in knee osteoarthritis [J]. Med Sci Sports Exerc, 2011, 43(8): 1538-1543.
33
Kurita N, Kamitani T, Wada O, et al. Disentangling associations between serum muscle biomarkers and sarcopenia in the presence of pain and inflammation among patients with osteoarthritis: the SPSS-OK study [J]. J Clin Rheumatol, 2021, 27(2): 56-63.
34
Ganguly A. Levels of C-reactive protein, creatine kinase-muscle and aldolase A are suitable biomarkers to detect the risk factors for osteoarthritic disorders: A novel diagnostic protocol [J]. Caspian J Intern Med, 2019, 10(1): 25-35.
35
Ucar HI, Tok M, Atalar E, et al. Predictive significance of plasma levels of interleukin-6 and high-sensitivity C-reactive protein in atrial fibrillation after coronary artery bypass surgery [J]. Heart Surg Forum, 2007, 10(2): E131-E135.
36
Fischer DC, Siebertz B, van de Leur E, et al. Induction of alpha1-antitrypsin synthesis in human articular chondrocytes by interleukin-6-type cytokines: evidence for a local acute-phase response in the joint[J]. Arthritis Rheum, 1999, 42(9): 1936-1945.
37
Olszewska-Slonina D, Matewski D, Jung S, et al. The activity of cathepsin D and alpha-1 antitrypsin in hip and knee osteoarthritis [J]. Acta Biochim Pol, 2013, 60(1): 99-106.
38
Khoshdel A, Forootan M, Afsharinasab M, et al. Assessment of the circulatory concentrations of cathepsin D, cathepsin K, and alpha-1 antitrypsin in patients with knee osteoarthritis [J]. Ir J Med Sci, 2023, 192(3): 1191-1196.
39
Awbrey BJ, Kuong SJ, MacNeil KL, et al. The role of alpha-1-protease inhibitor (A1PI) in the inhibition of protease activity in human knee osteoarthritis [J]. Agents Actions Suppl, 1993, 39: 167-171.
40
Wanner A. Towards new therapeutic solutions for alpha-1 antitrypsin deficiency: role of the alpha-1 foundation [J]. Chronic Obstr Pulm Dis, 2020, 7(3): 147-150.
41
Courties A, Do A, Leite S, et al. The role of the non-neuronal cholinergic system in inflammation and degradation processes in osteoarthritis [J]. Arthritis & Rheumatology, 2020, 72(12): 2072-2082.
42
Spieker J, Ackermann A, Salfelder A, et al. Acetylcholinesterase regulates skeletal in Ovo development of chicken limbs by ACh-Dependent and - Independent mechanisms [J]. PLoS One, 2016, 11(8): e0161675.
43
Spieker J, Mudersbach T, Vogel-Höpker A, et al. Endochondral ossification is accelerated in Cholinesterase-Deficient mice and in avian mesenchymal micromass cultures [J]. PLoS One, 2017, 12(1): e0170252.
44
Genever PG, Birch MA, Brown E, et al. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? [J]. Bone, 1999, 24(4): 297-303.
45
Inkson CA, Brabbs AC, Grewal TS, et al. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation [J]. Bone, 2004, 35(4): 819-827.
46
Lauwers M, Courties A, Sellam J, et al. The cholinergic system in joint health and osteoarthritis: a narrative-review [J]. Osteoarthritis Cartilage, 2021, 29(5): 643-653.
47
Rim YA, Orcid ID, Nam Y, et al. The role of chondrocyte hypertrophy and sen-escence in osteoarthritis initiation [J]. Int J Mol Sci, 2020, 21(7): 2358.
48
Zhang XJ, Greenberg DS. Acetylcholinesterase involvement in apoptosis [J]. Front Mol Neurosci, 2012, 5: 40.
49
Spieker J, Frieß JL, Sperling L, et al. Cholinergic control of bone development and beyond [J]. Int Immunopharmacol, 2020, 83: 106405.
50
Zhang DW, Zhou Y. The protective effects of Donepezil (DP) against cartilage matrix destruction induced by TNF-α [J]. Biochem Biophys Res Commun, 2014, 454(1): 115-118.
51
Stabler T, Zura RD, Hsueh MF, et al. Xanthine oxidase injurious response in acute joint injury [J]. Clinica Chimica Acta, 2015, 451, Part B: 170-174.
52
Simon D, Mascarenhas R, Saltzman BM, et al. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee[J]. Adv Orthop, 2015, 2015: 928301.
53
Ives A, Nomura J, Martinon F, et al. Xanthine oxidoreductase regulates macro-phage IL1β secretion upon NLRP3 [J]. Nat Commun, 2015, 6:6555.
54
Yan JF, Qin WP, Xiao BC, et al. Pathological calcification in osteoarthritis: an outcome or a disease initiator? [J]. Biological Reviews, 2020, 95(4): 960-985.
55
Nasi S, So A, Combes C, et al. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis [J]. Ann Rheum Dis, 2016, 75(7): 1372-1379.
56
Nasi S, Castelblanco M, Chobaz V, et al. Xanthine oxidoreductase is involved in chondrocyte mineralization and expressed in osteoarthritic damaged cartilage [J]. Front Cell Dev Biol, 2021, 9: 612440.
57
Hasegawa M, Segawa T, Maeda M, et al. Thrombin-cleaved osteopontin levels in synovial fluid correlate with disease severity of knee osteoarthritis [J]. J Rheumatol, 2011, 38(1): 129-134.
58
So AK, Varisco PA, Kemkes-Matthes B, et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways [J]. Journal of Thrombosis and Haemostasis, 2003, 1(12): 2510-2515.
59
Coughlin SR. Thrombin signalling and protease-activated receptors [J]. Nature, 2000, 407(6801): 258-264.
60
Huang CY, Chen SY, Tsai HC, et al. Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts [J]. Arthritis Rheum, 2012, 64(10): 3344-3354.
61
Xiang Y, Masuko-Hongo K, Sekine T, et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta [J]. Osteoarthritis Cartilage, 2006, 14(11): 1163-1173.
62
Hu QC, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis [J]. Int J Mol Sci, 2021, 22(4): 1742.
63
Huang CY, Lin HJ, Chen HS, et al. Thrombin promotes matrix metalloproteinase-13 expression through the PKCδ c-Src/EGFR/PI3K/Akt/AP-1 signaling pathway in human chondrocytes [J]. Mediators Inflamm, 2013, 2013: 326041.
64
Guillén M, Megías J, Gomar F, et al. Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes [J]. J Pathol, 2008, 214(4): 515-522.
65
Siller-Matula JM, Schwameis M, Blann A, et al. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects [J]. Thromb Haemost, 2011, 106(6): 1020-1033.
66
Rickles FR, Patierno S, Fernandez P. Tissue factor, thrombin, and cancer [J]. Chest, 2003, 124(3 Suppl): 58S-68S.
67
Verkleij CJN, Roelofs JJTH, Havik SR, et al. The role of thrombin-activatable fibrinolysis inhibitor in diabetic wound healing [J]. Thromb Res, 2010, 126(5): 442-446.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[3] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[4] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[5] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[6] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[9] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[10] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[11] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要