1 |
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study [J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
|
2 |
Deng YJ, Lu JQ, Li WL, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation [J]. Nat Commun, 2018, 9(1): 4564.
|
3 |
Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development [J]. Nat Rev Rheumatol, 2012, 8(2): 77-89.
|
4 |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis [J]. NATURE REVIEWS DISEASE PRIMERS, 2016, 2: 16072.
|
5 |
Courties A, Sellam J, Berenbaum F. Metabolic syndrome-associated osteoarthritis [J]. Curr Opin Rheumatol, 2017, 29(2): 214-222.
|
6 |
Mobasheri A, Rayman MP, Gualillo O, et al. The role of metabolism in the pathogenesis of osteoarthritis [J]. Nat Rev Rheumatol, 2017, 13(5): 302-311.
|
7 |
Berenbaum F, Griffin TM, Liu-Bryan R. Review: metabolic regulation of inflammation in osteoarthritis [J]. Arthritis Rheumatol, 2017, 69(1): 9-21.
|
8 |
毛燕,师绍敏,王旭,等. γ-谷氨酰转肽酶在骨质破坏相关疾病中的研究进展[J].中华老年骨科与康复电子杂志, 2022, 08(2): 123-128.
|
9 |
Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology [J]. Curr Opin Pharmacol, 2016, 28: 8-13.
|
10 |
Mehana ESE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review [J]. Life Sci, 2019, 234: 116786.
|
11 |
Schittenhelm L, Hilkens CM, Morrison VL. β(2) integrins as regulators of dendritic cell, monocyte, and macrophage function [J]. Front Immunol, 2017, 8: 1866.
|
12 |
Ehirchiou D, Bernabei I, Chobaz V, et al. CD11b signaling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis [J]. Front Cell Dev Biol, 2020, 8: 611757.
|
13 |
Song CX, Liu SY, Zhu WT, et al. Excessive mechanical stretch-mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the Wnt/β-catenin signaling pathway [J]. Mol Med Rep, 2021, 24(2): 593.
|
14 |
Zhang ZYH, Lu L, Ye T, et al. Inhibition of semaphorin 4D/Plexin-B1 signaling inhibits the subchondral bone loss in early-stage osteoarthritis of the temporomandibular joint [J]. Arch Oral Biol, 2022, 135: 105365.
|
15 |
Park HM, Lee JH, Lee YJ. Positive association of serum alkaline phosphatase level with severe knee osteoarthritis: a nationwide Population-Based study [J]. Diagnostics (Basel), 2020, 10(12): 1016.
|
16 |
Seo MS, Shim JY, Lee YJ. Relationship between serum alkaline phosphatase level, C-reactive protein and leukocyte counts in adults aged 60 years or older [J]. Scand J Clin Lab Invest, 2019, 79(4): 233-237.
|
17 |
Lowe JR, Pickup ME, Dixon JS, et al. Gamma glutamyl transpeptidase levels in arthritis: a correlation with clinical and laboratory indices of disease activity [J]. Ann Rheum Dis, 1978, 37(5): 428-431.
|
18 |
Ishizuka Y, Moriwaki S, Kawahara-Hanaoka M, et al. Treatment with Anti-γ-Glutamyl transpeptidase antibody attenuates osteolysis in Collagen-Induced arthritis mice [J]. J Bone Miner Res, 2007, 22(12): 1933-1942.
|
19 |
Moriwaki S, Into T, Suzuki K, et al. γ-Glutamyltranspeptidase is an endogenous activator of toll-like receptor 4-mediated osteoclastogenesis [J]. Sci Rep, 2016, 6: 35930.
|
20 |
Hiramatsu K, Asaba Y, Takeshita SN, et al. Overexpression of gamma-glutamyltransferase in transgenic mice accelerates bone resorption and causes osteoporosis [J]. Endocrinology, 2007, 148(6): 2708-2715.
|
21 |
Yang X, Lv Z, Xie G, et al. Pre-administration of rats with Helicobacter pylori gamma-glutamyl-transpeptidase alleviates osteoarthritis [J]. Biotechnol Lett, 2018, 40(3): 521-526.
|
22 |
Freeman M. The aetiopathogenesis of osteoarthrosis [J]. British Journal of Occupational Therapy, 1972, 35(2): 83.
|
23 |
Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis [J]. Bone, 2012, 51(2): 249-257.
|
24 |
Ke J, Long X, Liu Y, et al. Role of NF-kappaB in TNF-alpha-induced COX-2 expres-sion in synovial fibroblasts [J]. J Dent Res, 2007, 86(4): 363-367.
|
25 |
Li HM, Guo HL, Xu C, et al. Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis [J]. Bone, 2020, 141: 115584.
|
26 |
Arra M, Swarnkar G, Ke K, et al. LDHA-mediated ROS Generation in chondrocytes is a potential therapeutic target for osteoarthritis [J]. Nat Commun, 2020, 11(1): 3427.
|
27 |
王志伟,索海强,梁寒光,等.不同来源的间充质干细胞在早期骨关节炎中治疗的特点比较及展望[J].中华老年骨科与康复电子杂志, 2020, 6(6): 364-369.
|
28 |
Ahmed MR, Mehmood A, Bhatti F, et al. Combination of ADMSC sandchondro-cytes reduce shypertrophy and improves the function alproperties of osteoarth [J]. Osteoarthritis Cartilage, 2014, 22(11): 1894-1901.
|
29 |
Eider J, Ahmetov II, Fedotovskaya ON, et al. CKM gene polymorphism in Russian and Polish rowers [J]. Russ J Genet, 2015, 51(3): 318-321.
|
30 |
Fernández-Torres J, Martínez-Nava GA, Zamudio-Cuevas Y, et al. Ancestral contribution of the muscle-specific creatine kinase (CKM) polymorphism rs4884 in the knee osteoarthritis risk: a preliminary study [J]. Clin Rheumatol, 2021, 40(1): 279-285.
|
31 |
Chilibeck PD, Kaviani M, Candow DG, et al. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis [J]. Open Access J Sports Med, 2017, 8: 213-226.
|
32 |
Neves MJ, Gualano B, Roschel H, et al. Beneficial effect of creatine supplementation in knee osteoarthritis [J]. Med Sci Sports Exerc, 2011, 43(8): 1538-1543.
|
33 |
Kurita N, Kamitani T, Wada O, et al. Disentangling associations between serum muscle biomarkers and sarcopenia in the presence of pain and inflammation among patients with osteoarthritis: the SPSS-OK study [J]. J Clin Rheumatol, 2021, 27(2): 56-63.
|
34 |
Ganguly A. Levels of C-reactive protein, creatine kinase-muscle and aldolase A are suitable biomarkers to detect the risk factors for osteoarthritic disorders: A novel diagnostic protocol [J]. Caspian J Intern Med, 2019, 10(1): 25-35.
|
35 |
Ucar HI, Tok M, Atalar E, et al. Predictive significance of plasma levels of interleukin-6 and high-sensitivity C-reactive protein in atrial fibrillation after coronary artery bypass surgery [J]. Heart Surg Forum, 2007, 10(2): E131-E135.
|
36 |
Fischer DC, Siebertz B, van de Leur E, et al. Induction of alpha1-antitrypsin synthesis in human articular chondrocytes by interleukin-6-type cytokines: evidence for a local acute-phase response in the joint[J]. Arthritis Rheum, 1999, 42(9): 1936-1945.
|
37 |
Olszewska-Slonina D, Matewski D, Jung S, et al. The activity of cathepsin D and alpha-1 antitrypsin in hip and knee osteoarthritis [J]. Acta Biochim Pol, 2013, 60(1): 99-106.
|
38 |
Khoshdel A, Forootan M, Afsharinasab M, et al. Assessment of the circulatory concentrations of cathepsin D, cathepsin K, and alpha-1 antitrypsin in patients with knee osteoarthritis [J]. Ir J Med Sci, 2023, 192(3): 1191-1196.
|
39 |
Awbrey BJ, Kuong SJ, MacNeil KL, et al. The role of alpha-1-protease inhibitor (A1PI) in the inhibition of protease activity in human knee osteoarthritis [J]. Agents Actions Suppl, 1993, 39: 167-171.
|
40 |
Wanner A. Towards new therapeutic solutions for alpha-1 antitrypsin deficiency: role of the alpha-1 foundation [J]. Chronic Obstr Pulm Dis, 2020, 7(3): 147-150.
|
41 |
Courties A, Do A, Leite S, et al. The role of the non-neuronal cholinergic system in inflammation and degradation processes in osteoarthritis [J]. Arthritis & Rheumatology, 2020, 72(12): 2072-2082.
|
42 |
Spieker J, Ackermann A, Salfelder A, et al. Acetylcholinesterase regulates skeletal in Ovo development of chicken limbs by ACh-Dependent and - Independent mechanisms [J]. PLoS One, 2016, 11(8): e0161675.
|
43 |
Spieker J, Mudersbach T, Vogel-Höpker A, et al. Endochondral ossification is accelerated in Cholinesterase-Deficient mice and in avian mesenchymal micromass cultures [J]. PLoS One, 2017, 12(1): e0170252.
|
44 |
Genever PG, Birch MA, Brown E, et al. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? [J]. Bone, 1999, 24(4): 297-303.
|
45 |
Inkson CA, Brabbs AC, Grewal TS, et al. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation [J]. Bone, 2004, 35(4): 819-827.
|
46 |
Lauwers M, Courties A, Sellam J, et al. The cholinergic system in joint health and osteoarthritis: a narrative-review [J]. Osteoarthritis Cartilage, 2021, 29(5): 643-653.
|
47 |
Rim YA, Orcid ID, Nam Y, et al. The role of chondrocyte hypertrophy and sen-escence in osteoarthritis initiation [J]. Int J Mol Sci, 2020, 21(7): 2358.
|
48 |
Zhang XJ, Greenberg DS. Acetylcholinesterase involvement in apoptosis [J]. Front Mol Neurosci, 2012, 5: 40.
|
49 |
Spieker J, Frieß JL, Sperling L, et al. Cholinergic control of bone development and beyond [J]. Int Immunopharmacol, 2020, 83: 106405.
|
50 |
Zhang DW, Zhou Y. The protective effects of Donepezil (DP) against cartilage matrix destruction induced by TNF-α [J]. Biochem Biophys Res Commun, 2014, 454(1): 115-118.
|
51 |
Stabler T, Zura RD, Hsueh MF, et al. Xanthine oxidase injurious response in acute joint injury [J]. Clinica Chimica Acta, 2015, 451, Part B: 170-174.
|
52 |
Simon D, Mascarenhas R, Saltzman BM, et al. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee[J]. Adv Orthop, 2015, 2015: 928301.
|
53 |
Ives A, Nomura J, Martinon F, et al. Xanthine oxidoreductase regulates macro-phage IL1β secretion upon NLRP3 [J]. Nat Commun, 2015, 6:6555.
|
54 |
Yan JF, Qin WP, Xiao BC, et al. Pathological calcification in osteoarthritis: an outcome or a disease initiator? [J]. Biological Reviews, 2020, 95(4): 960-985.
|
55 |
Nasi S, So A, Combes C, et al. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis [J]. Ann Rheum Dis, 2016, 75(7): 1372-1379.
|
56 |
Nasi S, Castelblanco M, Chobaz V, et al. Xanthine oxidoreductase is involved in chondrocyte mineralization and expressed in osteoarthritic damaged cartilage [J]. Front Cell Dev Biol, 2021, 9: 612440.
|
57 |
Hasegawa M, Segawa T, Maeda M, et al. Thrombin-cleaved osteopontin levels in synovial fluid correlate with disease severity of knee osteoarthritis [J]. J Rheumatol, 2011, 38(1): 129-134.
|
58 |
So AK, Varisco PA, Kemkes-Matthes B, et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways [J]. Journal of Thrombosis and Haemostasis, 2003, 1(12): 2510-2515.
|
59 |
Coughlin SR. Thrombin signalling and protease-activated receptors [J]. Nature, 2000, 407(6801): 258-264.
|
60 |
Huang CY, Chen SY, Tsai HC, et al. Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts [J]. Arthritis Rheum, 2012, 64(10): 3344-3354.
|
61 |
Xiang Y, Masuko-Hongo K, Sekine T, et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta [J]. Osteoarthritis Cartilage, 2006, 14(11): 1163-1173.
|
62 |
Hu QC, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis [J]. Int J Mol Sci, 2021, 22(4): 1742.
|
63 |
Huang CY, Lin HJ, Chen HS, et al. Thrombin promotes matrix metalloproteinase-13 expression through the PKCδ c-Src/EGFR/PI3K/Akt/AP-1 signaling pathway in human chondrocytes [J]. Mediators Inflamm, 2013, 2013: 326041.
|
64 |
Guillén M, Megías J, Gomar F, et al. Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes [J]. J Pathol, 2008, 214(4): 515-522.
|
65 |
Siller-Matula JM, Schwameis M, Blann A, et al. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects [J]. Thromb Haemost, 2011, 106(6): 1020-1033.
|
66 |
Rickles FR, Patierno S, Fernandez P. Tissue factor, thrombin, and cancer [J]. Chest, 2003, 124(3 Suppl): 58S-68S.
|
67 |
Verkleij CJN, Roelofs JJTH, Havik SR, et al. The role of thrombin-activatable fibrinolysis inhibitor in diabetic wound healing [J]. Thromb Res, 2010, 126(5): 442-446.
|