切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 333 -342. doi: 10.3877/cma.j.issn.2096-0263.2023.06.002

临床论著

基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联
王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦()   
  1. 410008 长沙,中南大学湘雅医院骨科
    410008 长沙,中南大学湘雅医院骨科;410008 长沙,中南大学湘雅医院老年骨关节疾病防治教育部重点实验室;410008 长沙,中南大学湘雅医院国家老年疾病临床医学研究中心;410008 长沙,中南大学湘雅医院骨关节退变与损伤湖南省重点实验室
    410008 长沙,中南大学湘雅医院骨科;410008 长沙,中南大学湘雅医院老年骨关节疾病防治教育部重点实验室;410008 长沙,中南大学湘雅医院骨关节退变与损伤湖南省重点实验室
  • 收稿日期:2023-08-09 出版日期:2023-12-05
  • 通信作者: 王伊伦
  • 基金资助:
    湖南省自然科学基金项目(2022JJ40821); 中南大学湘雅医院青年科研基金项目(2021Q14)

Causal associations of gut Microbiota with phenotype indicators of sarcopenia: A mendelian randomization study

Ning Wang, Yanzhe Liu, Ziying Wu, Chao Zeng, Guanghua Lei, Tingting Sha, Yilun Wang()   

  1. Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
    Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha 410008, China
    Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha 410008, China
  • Received:2023-08-09 Published:2023-12-05
  • Corresponding author: Yilun Wang
引用本文:

王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.

Ning Wang, Yanzhe Liu, Ziying Wu, Chao Zeng, Guanghua Lei, Tingting Sha, Yilun Wang. Causal associations of gut Microbiota with phenotype indicators of sarcopenia: A mendelian randomization study[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(06): 333-342.

目的

本研究拟采用MR研究设计,以探讨肠道菌群与肌少症表型指标——握力和骨骼肌质量之间的因果关联。

方法

数据来源于英国生物银行数据库和公开发表且可获取数据的全基因组关联研究,选择131种肠道具体菌属的遗传变异作为工具变量。单核苷酸多态性(SNPs)筛选标准包括在全基因组水平显著关联、SNP之间相互独立以及工具变量的强度足够高。只有当F>10才被认为是一个足够强的工具变量,具有较低的工具偏倚可能性。采用逆方差加权法(IVW)作为主要分析方法,采用加权中位数法、MR Pleiotropy RESidual Sum and Outlier(MR-PRESSO)法以及"留一法"作为敏感性分析方法,评估131种肠道具体菌属与握力和骨骼肌质量之间的因果关联。使用MR-PRESSO方法检验水平多效性和解决异质性。

结果

本研究共纳入324 976名研究对象。工具变量SNPs数量为3~22,遗传预测因子效度检验的最小F值为14.6。IVW结果提示,共计9个经遗传学预测的肠道特定菌属与握力之间存在因果关联(P<0.05),其中Alloprevotella菌属(β=0.012 kg,95% CI:0.002,0.022)和Sellimonas菌属(β=0.014 kg,95% CI:0.006,0.022)相对丰度与握力水平呈现正向因果关联;Olsenella菌属(β=-0.012 kg,95% CI:-0.023,-0.001)和Paraprevotella菌属(β=-0.014 kg,95% CI:-0.023,-0.004)和握力水平呈现负向因果关联。并且,此4个肠道特定菌属与宿主握力之间的因果关联在不同MR敏感性分析方法中均存在统计学差异,提示结果稳定可靠,MR-PRESSO结果提示受水平多效性和异质性影响的可能较小。此外,本研究还发现,共计7个经遗传学预测的肠道特定菌属与骨骼肌质量之间存在因果关联(P<0.05),其中Eubacterium nodatum group菌属(β=0.069 kg,95% CI:0.012,0.125)与骨骼肌质量呈现正向因果关联;Erysipelatoclostridium菌属(β=-0.090 kg,95% CI:-0.162,-0.019)和Ruminococcaceae UCG011菌属(β=-0.104 kg,95% CI:-0.199,-0.010)与骨骼肌质量呈现负向因果关联。此3个肠道特定菌属与骨骼肌质量之间的因果关联在不同MR敏感性分析方法中均存在统计学差异,提示结果稳定可靠,MR-PRESSO结果提示受水平多效性和异质性影响的可能较小。

结论

本研究探讨了与肌少症可能存在因果关联的肠道特定菌属,其中Alloprevotella菌属、Sellimonas菌属和Eubacterium nodatum group菌属与肌少症表型指标存在潜在正向因果关联,Olsenella菌属、Paraprevotella菌属、Erysipelatoclostridium菌属和Ruminococcaceae UCG011菌属与肌少症表型指标存在潜在负向因果关联。这些发现为阐明肌少症发病机制、开发治疗新方法提供了理论参考。

Objective

This study aims to clarify the causal relationship between gut microbiota and phenotype indicators of sarcopenia, grip strength and skeletal muscle mass, based on Mendelian randomization (MR) study design.

Methods

According to the data derived from the British Biological Bank database and the published genome-wide association study with available data, the genetic variation of 131 specific intestinal bacteria was selected as the tool variable. The Single Nucleotide Polymorphism (SNP) selection criteria include being significantly associated with gut microbiota at the whole-genome level, mutually independent among SNPs, and having a sufficiently high instrumental variable strength. An instrumental variable is considered sufficiently strong when F>10. The inverse variance method (IVW) was used as the main analysis method, as well as the weighted median method and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method were used as the sensitivity analysis methods, to evaluate the causal relationship among 131 gut microbiota species and grip strength and skeletal muscle mass. The MR-PRESSO method is used to test for horizontal pleiotropy and address heterogeneity.

Results

A total of 324, 976 subjects were included in this study. The number of SNPs ranges from 3 to 22, with a minimum F value of 14.6. The IVW results suggested a causal relationship between the 9 genetically predicted bacterial genera and host grip strength (P<0.05). Among them, Alloprevotella (β=0.012 kg, 95% CI: 0.002, 0.022) and Sellimonas (β=0.014 kg, 95% CI: 0.006, 0.022) showed a positive causal effect, while Olsenella (β=-0.012 kg, 95% CI: -0.023, 0.001) and Paraprevotella (β=-0.014 kg, 95% CI: -0.023, 0.004) showed negative causality. The causal associations between these four gut specific bacteria and host grip strength were statistically different in different MR sensitivity analyses, suggesting that the results were stable and reliable. In addition, a total of 7 genetically predicted gut specific bacterial genera had causal associations with host skeletal muscle mass (P<0.05), among which Eubacterium nodatum group (β=0.069 kg, 95% CI: 0.012, 0.125) showed a positive causal association with host skeletal muscle mass, while Erysipelatoclostridium (β=-0.090 kg, 95% CI: -0.162, 0.019) and Ruminococcaceae UCG011 (β=-0.104 kg, 95% CI: -0.199, 0.010) showed a negative causal association with host skeletal muscle mass. The causal associations between these three specific gut bacteria and host skeletal muscle mass were statistically different in different MR sensitivity analyses, suggesting that the results were stable and reliable. The results of MR-PRESSO suggest that the potential influence of horizontal pleiotropy and heterogeneity may be relatively small.

Conclusion

This study investigated specific gut microbiota have a causal relationship with host grip strength and skeletal muscle mass, such as Alloprevotella, Selemonas, and Eubacterium nodatum group, which have a positive causal relationship with phenotype indicators of sarcopenia, while Olsenella, Paraprevotella, Erysipelatoclostridium and Ruminococcaceae UCG011 have a negative causal relationship with phenotype indicators of sarcopenia, so as to provide theoretical references for elucidating the pathogenesis of sarcopenia and developing new treatment methods.

图1 本研究的设计流程图
表1 招募时的研究对象体征
图2 经遗传学预测的肠道特定菌属与宿主握力之间提示因果关联的森林图
表2 使用IVW方法总结菌属与握力之间的因果关联
图3~6 菌属对握力因果影响的留一法分析森林图。图3 Alloprevotella菌属;图4 Sellimonas菌属;图5 Olsenella菌属;图6 Olsenella菌属
图7 经遗传学预测的肠道特定菌属与宿主骨骼肌质量之间提示因果关联的森林图
表3 利用IVW方法总结菌属与骨骼肌质量之间的因果关联
图8~10 菌属对握力因果影响的留一法分析森林图。图8 Eubacterium nodatum group菌属;图9 Erysipelatoclostridium菌属;图10 Ruminococcaceae UCG011菌属
1
Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988 [J]. Am J Clin Nutr, 1989, 50: 1121-1235.
2
Beaudart C, Rizzoli R, Bruyère O, et al. Sarcopenia:burden and challenges for public health [J]. Arch Public Health, 2014, 72(1): 45.
3
Kelley GA, Kelley KS. Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? [J]. Exp Gerontol, 2017, 96: 100-103.
4
Yeung SSY, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis [J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 485-500.
5
Wong RMY, Wong H, Zhang N, et al. The relationship between sarcopenia and fragility fracture-a systematic review [J]. Osteoporos Int, 2019, 30(3): 541-553.
6
Tagliafico AS, Bignotti B, Torri L, et al. Sarcopenia: how to measure, when and why [J]. Radiol Med, 2022, 127(3): 228-237.
7
Pinedo-Villanueva R, Westbury LD, Syddall HE, et al. Health Care Costs Associated With Muscle Weakness: A UK Population-Based Estimate [J]. Calcif Tissue Int, 2019, 104: 137-144.
8
Goates S, Du K, Arensberg MB, et al. Economic impact of hospitalizations in US adults with sarcopenia [J]. J Frailty Aging, 2019, 8(2): 93-99.
9
Janssen I, Shepard DS, Katzmarzyk PT, et al. The healthcare costs of sarcopenia in the United States [J]. J Am Geriatr Soc, 2004, 52(1): 80-85.
10
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(1): 16-31.
11
Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment [J]. J Am Med Dir Assoc, 2020, 21(3): 300-307.e2.
12
Kwak JY, Kwon KS. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia [J]. Ann Geriatr Med Res, 2019, 23(3): 98-104.
13
Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393: 2636-2646.
14
Hawley-Hague H, Horne M, Campbell M, et al. Multiple levels of influence on older adults' attendance and adherence to community exercise classes [J]. Gerontologist, 2014, 54(4): 599-610.
15
Milanović Z, Pantelić S, Trajković N, et al. Age-related decrease in physical activity and functional fitness among elderly men and women [J]. Clin Interv Aging, 2013, 8: 549-556.
16
Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review [J]. Osteoporos Int, 2017, 28(6): 1817-1833.
17
Yoshimura Y, Wakabayashi H, Yamada M, et al. Interventions for treating sarcopenia: a systematic review and Meta-Analysis of randomized controlled studies [J]. J Am Med Dir Assoc, 2017, 18(6): 553.e1-553.e16.
18
Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? [J]. Clin Nutr, 2018, 37(4): 1121-1132.
19
van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; the role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review [J]. J Am Med Dir Assoc, 2018, 19(1): 6-11.e3.
20
Kamei Y, Hatazawa Y, Uchitomi R, et al. Regulation of skeletal muscle function by amino acids [J]. Nutrients, 2020, 12(1): 261.
21
Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464(7285): 59-65.
22
Bakhtiar SM, LeBlanc JG, Salvucci E, et al. Implications of the human microbiome in inflammatory bowel diseases [J]. FEMS Microbiol Lett, 2013, 342(1): 10-17.
23
Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition [J]. Annu Rev Nutr, 2011, 31: 15-31.
24
Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function [J]. Nature Metabolism, 2020, 2(9): 840-848.
25
Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates [J]. Nat Rev Microbiol, 2021, 19(2): 77-94.
26
Fielding RA, Reeves AR, Jasuja R, et al. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults [J]. Exp Gerontol, 2019: 110722.
27
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly [J]. Nature, 2012, 488(7410): 178-184.
28
Ren X, Hao S, Yang C, et al. Alterations of intestinal microbiota in liver cirrhosis with muscle wasting [J]. Nutrition, 2021: 111081.
29
Margiotta E, Caldiroli L, Callegari ML, et al. Association of sarcopenia and gut microbiota composition in older patients with advanced chronic kidney disease, investigation of the interactions with uremic toxins,inflammation and oxidative stress [J]. Toxins (Basel), 2021: 13.
30
Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization [J]. Jama, 2017, 318: 1925-1926.
31
Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition [J]. Nat Genet, 2021, 53(2): 156-165.
32
Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age [J]. PLoS Med, 2015, 12(3): e1001779.
33
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome [J]. Elife, 2018, 30: e34408.
34
Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants [J]. Epidemiology, 2017, 28(1): 30-42.
35
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies [J]. Hum Mol Genet, 2018, 27(R2): R195-R208.
36
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J]. Nat Genet, 2018, 50(5): 693-698.
37
Picca A, Ponziani FR, Calvani R, et al. Gut microbial,inflammatory and metabolic signatures in older People with physical frailty and sarcopenia: results from the BIOSPHERE study [J]. Nutrients, 2019, 12(1): 65.
38
Castro-Mejía JL, Khakimov B, Krych Ł, et al. Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures [J]. Aging Cell, 2020, 19(3): e13105.
39
Bressa C, Bailén-Andrino M, Pérez-Santiago J, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women [J]. PLoS One, 2017, 12(2): e0171352.
40
Castellanos N, Diez GG, Antúnez-Almagro C, et al. A critical Mutualism-Competition interplay underlies the loss of microbial diversity in sedentary lifestyle [J]. Front Microbiol 2019: 3142.
41
van Tongeren SP, Slaets JPJ, Harmsen HJM, et al. Fecal microbiota composition and frailty [J]. Appl Environ Microbiol, 2005, 71(10): 6438-6442.
42
Morita E, Yokoyama H, Imai D, et al. Aerobic exercise training with brisk walking increases intestinal bacteroides in healthy elderly women [J]. Nutrients, 2019, 11(4): 868.
43
Pietrucci D, Teofani A, Milanesi M, et al. Machine learning data analysis highlights the role of parasutterella and alloprevotella in autism spectrum disorders [J]. Biomedicines, 2022, 10(8):2028.
44
Chen YJ, Wu H, Wu SD, et al. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation [J]. J Gastroenterol Hepatol, 2018, 33(11): 1844-1852.
45
Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice [J]. Nature, 2019, 572(7770): 474-480.
46
Gomez-Nguyen A, Basson AR, Dark-Fleury L, et al. Parabacteroides distasonis induces depressive-like behavior in a mouse model of Crohn's disease [J]. Brain Behav Immun, 2021, 98: 245-250.
47
Wang K, Liao MF, Zhou N, et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids [J]. Cell Rep, 2019, 26(1): 222-235.e5.
48
Chen GJ, Peng YJ, Huang YJ, et al. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice [J]. J Adv Res, 2023, 50: 35-54.
49
Yuan S, Larsson SC. Assessing causal associations of obesity and diabetes with kidney stones using Mendelian randomization analysis [J]. Mol Genet Metab, 2021, 134(1/2): 212-215.
50
Yuan S, Carter P, Mason AM, et al. Genetic liability to rheumatoid arthritis in relation to coronary artery disease and stroke risk [J]. Arthritis Rheumatol, 2022, 74(10): 1638-1647.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[3] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[4] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[5] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[6] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[7] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[8] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[9] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[10] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[11] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[14] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[15] 王超珺, 董志勇, 赵宛鄂, 胡嵩浩, 刘昭晖. 肌少症对肥胖患者袖状胃切除术后效果的影响研究[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 283-287.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?