切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (06) : 333 -342. doi: 10.3877/cma.j.issn.2096-0263.2023.06.002

临床论著

基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联
王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦()   
  1. 410008 长沙,中南大学湘雅医院骨科
    410008 长沙,中南大学湘雅医院骨科;410008 长沙,中南大学湘雅医院老年骨关节疾病防治教育部重点实验室;410008 长沙,中南大学湘雅医院国家老年疾病临床医学研究中心;410008 长沙,中南大学湘雅医院骨关节退变与损伤湖南省重点实验室
    410008 长沙,中南大学湘雅医院骨科;410008 长沙,中南大学湘雅医院老年骨关节疾病防治教育部重点实验室;410008 长沙,中南大学湘雅医院骨关节退变与损伤湖南省重点实验室
  • 收稿日期:2023-08-09 出版日期:2023-12-05
  • 通信作者: 王伊伦
  • 基金资助:
    湖南省自然科学基金项目(2022JJ40821); 中南大学湘雅医院青年科研基金项目(2021Q14)

Causal associations of gut Microbiota with phenotype indicators of sarcopenia: A mendelian randomization study

Ning Wang, Yanzhe Liu, Ziying Wu, Chao Zeng, Guanghua Lei, Tingting Sha, Yilun Wang()   

  1. Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
    Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha 410008, China
    Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha 410008, China
  • Received:2023-08-09 Published:2023-12-05
  • Corresponding author: Yilun Wang
引用本文:

王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.

Ning Wang, Yanzhe Liu, Ziying Wu, Chao Zeng, Guanghua Lei, Tingting Sha, Yilun Wang. Causal associations of gut Microbiota with phenotype indicators of sarcopenia: A mendelian randomization study[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(06): 333-342.

目的

本研究拟采用MR研究设计,以探讨肠道菌群与肌少症表型指标——握力和骨骼肌质量之间的因果关联。

方法

数据来源于英国生物银行数据库和公开发表且可获取数据的全基因组关联研究,选择131种肠道具体菌属的遗传变异作为工具变量。单核苷酸多态性(SNPs)筛选标准包括在全基因组水平显著关联、SNP之间相互独立以及工具变量的强度足够高。只有当F>10才被认为是一个足够强的工具变量,具有较低的工具偏倚可能性。采用逆方差加权法(IVW)作为主要分析方法,采用加权中位数法、MR Pleiotropy RESidual Sum and Outlier(MR-PRESSO)法以及"留一法"作为敏感性分析方法,评估131种肠道具体菌属与握力和骨骼肌质量之间的因果关联。使用MR-PRESSO方法检验水平多效性和解决异质性。

结果

本研究共纳入324 976名研究对象。工具变量SNPs数量为3~22,遗传预测因子效度检验的最小F值为14.6。IVW结果提示,共计9个经遗传学预测的肠道特定菌属与握力之间存在因果关联(P<0.05),其中Alloprevotella菌属(β=0.012 kg,95% CI:0.002,0.022)和Sellimonas菌属(β=0.014 kg,95% CI:0.006,0.022)相对丰度与握力水平呈现正向因果关联;Olsenella菌属(β=-0.012 kg,95% CI:-0.023,-0.001)和Paraprevotella菌属(β=-0.014 kg,95% CI:-0.023,-0.004)和握力水平呈现负向因果关联。并且,此4个肠道特定菌属与宿主握力之间的因果关联在不同MR敏感性分析方法中均存在统计学差异,提示结果稳定可靠,MR-PRESSO结果提示受水平多效性和异质性影响的可能较小。此外,本研究还发现,共计7个经遗传学预测的肠道特定菌属与骨骼肌质量之间存在因果关联(P<0.05),其中Eubacterium nodatum group菌属(β=0.069 kg,95% CI:0.012,0.125)与骨骼肌质量呈现正向因果关联;Erysipelatoclostridium菌属(β=-0.090 kg,95% CI:-0.162,-0.019)和Ruminococcaceae UCG011菌属(β=-0.104 kg,95% CI:-0.199,-0.010)与骨骼肌质量呈现负向因果关联。此3个肠道特定菌属与骨骼肌质量之间的因果关联在不同MR敏感性分析方法中均存在统计学差异,提示结果稳定可靠,MR-PRESSO结果提示受水平多效性和异质性影响的可能较小。

结论

本研究探讨了与肌少症可能存在因果关联的肠道特定菌属,其中Alloprevotella菌属、Sellimonas菌属和Eubacterium nodatum group菌属与肌少症表型指标存在潜在正向因果关联,Olsenella菌属、Paraprevotella菌属、Erysipelatoclostridium菌属和Ruminococcaceae UCG011菌属与肌少症表型指标存在潜在负向因果关联。这些发现为阐明肌少症发病机制、开发治疗新方法提供了理论参考。

Objective

This study aims to clarify the causal relationship between gut microbiota and phenotype indicators of sarcopenia, grip strength and skeletal muscle mass, based on Mendelian randomization (MR) study design.

Methods

According to the data derived from the British Biological Bank database and the published genome-wide association study with available data, the genetic variation of 131 specific intestinal bacteria was selected as the tool variable. The Single Nucleotide Polymorphism (SNP) selection criteria include being significantly associated with gut microbiota at the whole-genome level, mutually independent among SNPs, and having a sufficiently high instrumental variable strength. An instrumental variable is considered sufficiently strong when F>10. The inverse variance method (IVW) was used as the main analysis method, as well as the weighted median method and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method were used as the sensitivity analysis methods, to evaluate the causal relationship among 131 gut microbiota species and grip strength and skeletal muscle mass. The MR-PRESSO method is used to test for horizontal pleiotropy and address heterogeneity.

Results

A total of 324, 976 subjects were included in this study. The number of SNPs ranges from 3 to 22, with a minimum F value of 14.6. The IVW results suggested a causal relationship between the 9 genetically predicted bacterial genera and host grip strength (P<0.05). Among them, Alloprevotella (β=0.012 kg, 95% CI: 0.002, 0.022) and Sellimonas (β=0.014 kg, 95% CI: 0.006, 0.022) showed a positive causal effect, while Olsenella (β=-0.012 kg, 95% CI: -0.023, 0.001) and Paraprevotella (β=-0.014 kg, 95% CI: -0.023, 0.004) showed negative causality. The causal associations between these four gut specific bacteria and host grip strength were statistically different in different MR sensitivity analyses, suggesting that the results were stable and reliable. In addition, a total of 7 genetically predicted gut specific bacterial genera had causal associations with host skeletal muscle mass (P<0.05), among which Eubacterium nodatum group (β=0.069 kg, 95% CI: 0.012, 0.125) showed a positive causal association with host skeletal muscle mass, while Erysipelatoclostridium (β=-0.090 kg, 95% CI: -0.162, 0.019) and Ruminococcaceae UCG011 (β=-0.104 kg, 95% CI: -0.199, 0.010) showed a negative causal association with host skeletal muscle mass. The causal associations between these three specific gut bacteria and host skeletal muscle mass were statistically different in different MR sensitivity analyses, suggesting that the results were stable and reliable. The results of MR-PRESSO suggest that the potential influence of horizontal pleiotropy and heterogeneity may be relatively small.

Conclusion

This study investigated specific gut microbiota have a causal relationship with host grip strength and skeletal muscle mass, such as Alloprevotella, Selemonas, and Eubacterium nodatum group, which have a positive causal relationship with phenotype indicators of sarcopenia, while Olsenella, Paraprevotella, Erysipelatoclostridium and Ruminococcaceae UCG011 have a negative causal relationship with phenotype indicators of sarcopenia, so as to provide theoretical references for elucidating the pathogenesis of sarcopenia and developing new treatment methods.

图1 本研究的设计流程图
表1 招募时的研究对象体征
图2 经遗传学预测的肠道特定菌属与宿主握力之间提示因果关联的森林图
表2 使用IVW方法总结菌属与握力之间的因果关联
图3~6 菌属对握力因果影响的留一法分析森林图。图3 Alloprevotella菌属;图4 Sellimonas菌属;图5 Olsenella菌属;图6 Olsenella菌属
图7 经遗传学预测的肠道特定菌属与宿主骨骼肌质量之间提示因果关联的森林图
表3 利用IVW方法总结菌属与骨骼肌质量之间的因果关联
图8~10 菌属对握力因果影响的留一法分析森林图。图8 Eubacterium nodatum group菌属;图9 Erysipelatoclostridium菌属;图10 Ruminococcaceae UCG011菌属
1
Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19-21, 1988 [J]. Am J Clin Nutr, 1989, 50: 1121-1235.
2
Beaudart C, Rizzoli R, Bruyère O, et al. Sarcopenia:burden and challenges for public health [J]. Arch Public Health, 2014, 72(1): 45.
3
Kelley GA, Kelley KS. Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? [J]. Exp Gerontol, 2017, 96: 100-103.
4
Yeung SSY, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis [J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 485-500.
5
Wong RMY, Wong H, Zhang N, et al. The relationship between sarcopenia and fragility fracture-a systematic review [J]. Osteoporos Int, 2019, 30(3): 541-553.
6
Tagliafico AS, Bignotti B, Torri L, et al. Sarcopenia: how to measure, when and why [J]. Radiol Med, 2022, 127(3): 228-237.
7
Pinedo-Villanueva R, Westbury LD, Syddall HE, et al. Health Care Costs Associated With Muscle Weakness: A UK Population-Based Estimate [J]. Calcif Tissue Int, 2019, 104: 137-144.
8
Goates S, Du K, Arensberg MB, et al. Economic impact of hospitalizations in US adults with sarcopenia [J]. J Frailty Aging, 2019, 8(2): 93-99.
9
Janssen I, Shepard DS, Katzmarzyk PT, et al. The healthcare costs of sarcopenia in the United States [J]. J Am Geriatr Soc, 2004, 52(1): 80-85.
10
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(1): 16-31.
11
Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment [J]. J Am Med Dir Assoc, 2020, 21(3): 300-307.e2.
12
Kwak JY, Kwon KS. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia [J]. Ann Geriatr Med Res, 2019, 23(3): 98-104.
13
Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393: 2636-2646.
14
Hawley-Hague H, Horne M, Campbell M, et al. Multiple levels of influence on older adults' attendance and adherence to community exercise classes [J]. Gerontologist, 2014, 54(4): 599-610.
15
Milanović Z, Pantelić S, Trajković N, et al. Age-related decrease in physical activity and functional fitness among elderly men and women [J]. Clin Interv Aging, 2013, 8: 549-556.
16
Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review [J]. Osteoporos Int, 2017, 28(6): 1817-1833.
17
Yoshimura Y, Wakabayashi H, Yamada M, et al. Interventions for treating sarcopenia: a systematic review and Meta-Analysis of randomized controlled studies [J]. J Am Med Dir Assoc, 2017, 18(6): 553.e1-553.e16.
18
Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? [J]. Clin Nutr, 2018, 37(4): 1121-1132.
19
van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; the role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review [J]. J Am Med Dir Assoc, 2018, 19(1): 6-11.e3.
20
Kamei Y, Hatazawa Y, Uchitomi R, et al. Regulation of skeletal muscle function by amino acids [J]. Nutrients, 2020, 12(1): 261.
21
Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464(7285): 59-65.
22
Bakhtiar SM, LeBlanc JG, Salvucci E, et al. Implications of the human microbiome in inflammatory bowel diseases [J]. FEMS Microbiol Lett, 2013, 342(1): 10-17.
23
Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition [J]. Annu Rev Nutr, 2011, 31: 15-31.
24
Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function [J]. Nature Metabolism, 2020, 2(9): 840-848.
25
Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates [J]. Nat Rev Microbiol, 2021, 19(2): 77-94.
26
Fielding RA, Reeves AR, Jasuja R, et al. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults [J]. Exp Gerontol, 2019: 110722.
27
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly [J]. Nature, 2012, 488(7410): 178-184.
28
Ren X, Hao S, Yang C, et al. Alterations of intestinal microbiota in liver cirrhosis with muscle wasting [J]. Nutrition, 2021: 111081.
29
Margiotta E, Caldiroli L, Callegari ML, et al. Association of sarcopenia and gut microbiota composition in older patients with advanced chronic kidney disease, investigation of the interactions with uremic toxins,inflammation and oxidative stress [J]. Toxins (Basel), 2021: 13.
30
Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization [J]. Jama, 2017, 318: 1925-1926.
31
Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition [J]. Nat Genet, 2021, 53(2): 156-165.
32
Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age [J]. PLoS Med, 2015, 12(3): e1001779.
33
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome [J]. Elife, 2018, 30: e34408.
34
Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants [J]. Epidemiology, 2017, 28(1): 30-42.
35
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies [J]. Hum Mol Genet, 2018, 27(R2): R195-R208.
36
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J]. Nat Genet, 2018, 50(5): 693-698.
37
Picca A, Ponziani FR, Calvani R, et al. Gut microbial,inflammatory and metabolic signatures in older People with physical frailty and sarcopenia: results from the BIOSPHERE study [J]. Nutrients, 2019, 12(1): 65.
38
Castro-Mejía JL, Khakimov B, Krych Ł, et al. Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures [J]. Aging Cell, 2020, 19(3): e13105.
39
Bressa C, Bailén-Andrino M, Pérez-Santiago J, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women [J]. PLoS One, 2017, 12(2): e0171352.
40
Castellanos N, Diez GG, Antúnez-Almagro C, et al. A critical Mutualism-Competition interplay underlies the loss of microbial diversity in sedentary lifestyle [J]. Front Microbiol 2019: 3142.
41
van Tongeren SP, Slaets JPJ, Harmsen HJM, et al. Fecal microbiota composition and frailty [J]. Appl Environ Microbiol, 2005, 71(10): 6438-6442.
42
Morita E, Yokoyama H, Imai D, et al. Aerobic exercise training with brisk walking increases intestinal bacteroides in healthy elderly women [J]. Nutrients, 2019, 11(4): 868.
43
Pietrucci D, Teofani A, Milanesi M, et al. Machine learning data analysis highlights the role of parasutterella and alloprevotella in autism spectrum disorders [J]. Biomedicines, 2022, 10(8):2028.
44
Chen YJ, Wu H, Wu SD, et al. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation [J]. J Gastroenterol Hepatol, 2018, 33(11): 1844-1852.
45
Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice [J]. Nature, 2019, 572(7770): 474-480.
46
Gomez-Nguyen A, Basson AR, Dark-Fleury L, et al. Parabacteroides distasonis induces depressive-like behavior in a mouse model of Crohn's disease [J]. Brain Behav Immun, 2021, 98: 245-250.
47
Wang K, Liao MF, Zhou N, et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids [J]. Cell Rep, 2019, 26(1): 222-235.e5.
48
Chen GJ, Peng YJ, Huang YJ, et al. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice [J]. J Adv Res, 2023, 50: 35-54.
49
Yuan S, Larsson SC. Assessing causal associations of obesity and diabetes with kidney stones using Mendelian randomization analysis [J]. Mol Genet Metab, 2021, 134(1/2): 212-215.
50
Yuan S, Carter P, Mason AM, et al. Genetic liability to rheumatoid arthritis in relation to coronary artery disease and stroke risk [J]. Arthritis Rheumatol, 2022, 74(10): 1638-1647.
[1] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[2] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[3] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[4] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[5] 毛宁, 徐文婷, 朱勇. 孟德尔随机化探索雄性激素水平与肛周脓肿的关系[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 490-494.
[6] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[7] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[8] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[9] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[10] 王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[13] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[14] 刘艳, 唐神结. 肠道菌群与抗结核药及其所致肝损伤的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 82-86.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要