切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2023, Vol. 09 ›› Issue (02) : 113 -119. doi: 10.3877/cma.j.issn.2096-0263.2023.02.008

综述

细胞衰老在骨代谢及退行性疾病中的研究进展
刘晓南, 余斌()   
  1. 510515 广州,南方医科大学附属南方医院创伤骨科
  • 收稿日期:2022-10-19 出版日期:2023-04-05
  • 通信作者: 余斌
  • 基金资助:
    国家自然科学基金重点项目(81830079); 国家自然科学基金青年项目(82002353)

Research progress of cellular senescence in bone metabolism and degenerative diseases

Xiaonan Liu, Bin Yu()   

  1. Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2022-10-19 Published:2023-04-05
  • Corresponding author: Bin Yu
引用本文:

刘晓南, 余斌. 细胞衰老在骨代谢及退行性疾病中的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 113-119.

Xiaonan Liu, Bin Yu. Research progress of cellular senescence in bone metabolism and degenerative diseases[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(02): 113-119.

细胞衰老指细胞发生的不可逆的细胞周期停滞过程,是近年来疾病研究中的热点。细胞衰老的主要原因是DNA损伤或表观遗传学改变引起的抑癌基因p16,p21或p53的激活,从而导致细胞周期停滞。部分发生细胞衰老的细胞还具有衰老相关的分泌表型(SASP),通过分泌炎症因子以及细胞外基质水解酶引起组织微环境和周围细胞的变化。近年的研究显示,细胞衰老在维持骨发育稳态以及介导老年性骨关节疾病中具有重要功能,而衰老细胞的清除有助于延缓退行性骨关节疾病的进展。通过回顾近几年关于细胞衰老和SASP在骨组织中的研究,本文总结了在不同生理阶段骨组织发生细胞衰老的有益和不利作用,讨论了细胞衰老在老年退行性骨关节疾病中的作用。虽然相关研究已取得一定的进展,但仍存在研究干扰因素较多、相关机制研究较少等不足。而对细胞衰老影响骨发育及相关疾病的文献进行综述,有利于进一步理解细胞衰老的分子机制,为从细胞衰老的角度理解骨发育及防治退行性骨关节疾病提供理论基础和思路。

Cellular senescence refers to the irreversible cell cycle arrest process of cells, which is one of the focus in disease research in recent years. The main cause of cellular senescence is the activation of the tumor suppressor gene p16, p21 or p53 caused by DNA damage or epigenetic changes, resulting in growth arrest and the senescence-associated secretory phenotype, which leads to the release of inflammatory factors and extracellular matrix degradation proteases or hydrolases. Evidences have indicated that cellular senescence is important in maintaining normal embryonic development and mediating bone diseases in aging. Studies have shown that the clearance of senescence cells help delay the progression of age-related diseases in bone such as osteoarthritis and osteoporosis. Here, we reviewed recent studies on cellular senescence and SASP, and summarized the literature on the beneficial and adverse role of cellular senescence in different physiological stages. We also discussed the role of cellular senescence in maintaining the homeostasis of musculoskeletal system and mediating age-related degenerative bone and joint disorders. Although research on cellular senescence has made some progress, there are still some limitations. The purpose of this literature review is to provide a general picture on cellular senescence on bone development and bone-related diseases and to further facilitate understanding of the molecular mechanism of cell senescence and provide theoretical basis and ideas for understanding bone development as well as preventing degenerative bone and joint diseases from the cellular senescence perspective.

1
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing [J]. Nature, 2018, 561(7721): 45-56.
2
Qiao D, Liu X, Tu R, et al. Gender-specific prevalence and influencing factors of osteopenia and osteoporosis in Chinese rural population:the Henan Rural Cohort Study [J]. BMJ Open, 2020, 10(1): e28593.
3
He Q, Zhang J. Prevalence of osteoarthritis and association between smoking patterns and osteoarthritis in China:a cross-sectional study [J]. Frontiers of Nursing, 2018, 5(2): 111-118.
4
Wan M. Gray-Gaillard E F,elisseeff J H.cellular senescence in musculoskeletal homeostasis,diseases,and regeneration [J]. Bone Res, 2021, 9(1): 41.
5
Tchkonia T, Kirkland JL. Aging,cell senescence,and chronic disease: emerging therapeutic strategies [J]. JAMA, 2018, 320(13): 1319-1320.
6
Van Deursen JM. The role of senescent cells in ageing [J]. Nature, 2014, 509(7501): 439-446.
7
He S, Sharpless NE. Senescence in health and disease [J]. Cell, 2017, 169(6): 1000-1011.
8
Muñoz-Espín D, Serrano M. Cellular senescence:from physiology to pathology [J]. Nat Rev Mol Cell Biol, 2014, 15(7): 482-496.
9
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease [J]. Int Rev Cell Mol Biol, 2019, 346: 97-128.
10
Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16ink4a-positive senescent cells delays ageing-associated disorders [J]. Nature, 2011, 479(7372): 232-236.
11
Farr J N, Khosla S. Cellular senescence in bone [J]. Bone, 2019, 121: 121-133.
12
Li CJ, Xiao Y, Sun YC, et al. Senescent immune cells release grancalcin to promote skeletal aging [J]. Cell Metab, 2021, 33(10): 1957-1973.
13
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice [J]. Nature Medicine, 2017, 23(9): 1072-1079.
14
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains [J]. Exp Cell Res, 1961, 25: 585-621.
15
Hayflick L. The Limited In Vitro Lifetime Of Human Diploid Cell Strains [J]. Exp Cell Res, 1965, 37: 614-636.
16
Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells:an emerging target for diseases of ageing [J]. Nat Rev Drug Discov, 2017, 16(10): 718-735.
17
Chen Q M. Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints [J]. Ann N Y Acad Sci, 2000, 908: 111-125.
18
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan [J]. Nature, 2016, 530(7589): 184-189.
19
Toussaint O, Dumont P, Dierick JF, et al. Stress-induced premature senescence. Essence of life, evolution, stress, and aging [J]. Ann N Y Acad Sci, 2000, 908: 85-98.
20
Dierick J, Eliaers F, Remacle J, et al. Stress-induced premature senescence and replicative senescence are different phenotypes,proteomic evidence [J]. Biochem Pharmacol, 2002, 64(5): 1011-1017.
21
Borodkina AV, Deryabin PI, Giukova AA, et al. Social Life"of senescent cells:what is SASP and why study it? [J]. Acta Naturae, 2018, 10(1): 4-14.
22
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence:defining a path forward [J]. Cell, 2019, 179(4): 813-827.
23
Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence [J]. Nat Cell Biol, 2006, 8(11): 1291-1297.
24
Imai Y, Takahashi A, Hanyu A, et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence Switch [J]. Cell Rep, 2014, 7(1): 194-207.
25
Lujambio A. To clear, or not to clear (senescent cells)? That is the question [J]. Bioessays, 2016, 38 Suppl 1: S56-S64.
26
Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence [J]. Mol Biol Rep, 2016, 43(11): 1213-1220.
27
Watanabe S, Kawamoto S, Ohtani N, et al. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases [J]. Cancer Sci, 2017, 108(4): 563-569.
28
Rodier F, Coppé J, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion [J]. Nat Cell Biol, 2009, 11(8): 973-979.
29
Coppé J, Desprez P, Krtolica A, et al. The Senescence-Associated secretory phenotype:the dark side of tumor suppression [J]. Annual Review of Pathology-Mechanisms of Disease, 2010, 5(1): 99-118.
30
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA [J]. Dev Cell, 2014, 31(6): 722-733.
31
Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation [J]. Nat Cell Biol, 2015, 17(8): 1049-1061.
32
Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype [J]. Cell Metab, 2016, 23(2): 303-314.
33
Hernandez-Segura A, De Jong TV, Melov S, et al. Unmasking transcriptional heterogeneity in senescent cells [J]. Curr Biol, 2017, 27(17): 2652-2660.
34
Wiley CD, Schaum N, Alimirah F, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype [J]. Sci Rep, 2018, 8(1): 2410.
35
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity [J]. Genes Dev, 2011, 25(20): 2125-2136.
36
Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype [J]. Nat Cell Biol, 2015, 17(9): 1205-1217.
37
Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network [J]. Cell, 2008, 133(6): 1019-1031.
38
Acosta JC, O'loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence [J]. Cell, 2008, 133(6): 1006-1018.
39
Gluck S, Ablasser A. Innate immunosensing of DNA in cellular senescence [J]. Curr Opin Immunol, 2018, 56: 31-36.
40
Ito T, Teo YV, Evans SA, et al. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone Methylation-Dependent pathways [J]. Cell Rep, 2018, 22(13): 3480-3492.
41
Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence [J]. Trends Cell Biol, 2017, 27(11): 820-832.
42
Munoz-Espin D, Canamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development [J]. Cell, 2013, 155(5): 1104-1118.
43
Storer M, Mas A, Robert-Moreno A, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning [J]. Cell, 2013, 155(5): 1119-1130.
44
Fuchs Y, Steller H. Programmed cell death in animal development and disease [J]. Cell, 2011, 147(4): 742-758.
45
Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models [J]. Growth Hormone & IGF Research, 2016, 28: 26-42.
46
Rauch F. The dynamics of bone structure development during pubertal growth [J]. J Musculoskelet Neuronal Interact, 2012, 12(1): 1-6.
47
Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling,ossification and angiogenesis during endochondral bone formation [J]. Nat Med, 1999, 5(6): 623-628.
48
Li C, Chai Y, Wang L, et al. Programmed cell senescence in skeleton during late puberty [J]. Nat Commun, 2017, 8(1): 1312.
49
Chen JR, Lazarenko OP, Zhao H, et al. Maternal obesity impairs skeletal development in adult offspring [J]. J Endocrinol, 2018, 239(1): 33-47.
50
Chen JR, Lazarenko OP, Blackburn ML, et al. Maternal obesity programs senescence signaling and glucose metabolism in Osteo-Progenitors from rat and human [J]. Endocrinology, 2016, 157(11): 4172-4183.
51
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis [J]. Lancet, 2019, 393(10182): 1745-1759.
52
Martin JA, Brown TD, Heiner AD, et al. Chondrocyte senescence, joint loading and osteoarthritis [J]. Clin Orthop Relat Res, 2004 (427 Suppl): S96-S103.
53
Martin JA, Brown T, Heiner A, et al. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence [J]. Biorheology, 2004, 41(3/4): 479-491.
54
Price JS, Waters JG, Darrah C, et al. The role of chondrocyte senescence in osteoarthritis [J]. Aging Cell, 2002, 1(1): 57-65.
55
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment [J]. Nat Med, 2017, 23(6): 775-781.
56
Jeon OH, David N, Campisi J, et al. Senescent cells and osteoarthritis:a painful connection [J]. J Clin Invest, 2018, 128(4): 1229-1237.
57
Diekman BO, Sessions GA, Collins JA, et al. Expression of p16 (INK)(4a)is a biomarker of chondrocyte aging but does not cause osteoarthritis [J]. Aging Cell, 2018, 17(4): e12771.
58
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis [J]. Nat Med, 2013, 19(6): 704-712.
59
Tominaga K, Suzuki H I. TGF-beta Signaling in Cellular Senescence and Aging-Related Pathology [J]. Int J Mol Sci, 2019, 20(20): 5002.
60
Su W, Liu G, Mohajer B, et al. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2 [J]. Elife, 2022, 26(11): 79773.
61
Ushiyama T, Chano T, Inoue K, et al. Cytokine production in the infrapatellar fat pad:another source of cytokines in knee synovial fluids [J]. Ann Rheum Dis, 2003, 62(2): 108-112.
62
Benito MJ, Veale DJ, Fitzgerald O, et al. Synovial tissue inflammation in early and late osteoarthritis [J]. Ann Rheum Dis, 2005, 64(9): 1263-1267.
63
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis:now and the future [J]. Lancet, 2011, 377(9773): 1276-1287.
64
Seeman E. Pathogenesis of bone fragility in women and men [J]. Lancet, 2002, 359(9320): 1841-1850.
65
夏维波.骨质疏松症的现状和防治策略[J].中国医学前沿杂志:电子版, 2015, 7(10): 1-3.
66
倪乙洪,王正博,刘权,等.细胞衰老在老年骨质疏松症防治中的研究进展[J].中国骨质疏松杂志, 2020, 26(8): 1207-1211.
67
Abrahamsen B, Van Staa T, Ariely R, et al. Excess mortality following hip fracture: a systematic epidemiological review [J]. Osteoporos Int, 2009, 20(10): 1633-1650.
68
Bussian TJ, Aziz A, Meyer CF, et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline [J]. Nature, 2018, 562(7728): 578-582.
69
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age [J]. Nat Med, 2018, 24(8): 1246-1256.
70
Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment [J]. J Bone Miner Res, 2016, 31(11): 1920-1929.
71
Farr J N, Xu M, Weivoda M M, et al. Targeting cellular senescence prevents age-related bone loss in micev[J]. Nat Med, 2017, 23(9): 1072-1079.
72
Kim HN, Chang J, Iyer S, et al. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice [J]. Aging Cell, 2019, 18(3): e12923.
73
Liu X, Chai Y, Liu G, et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis [J]. Nat Commun, 2021, 12(1): 1832.
74
Farr JN, Rowsey JL, Eckhardt BA, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis:evidence in young adult mice and older humans [J]. J Bone Miner Res, 2019, 34(8): 1407-1418.
75
Chen J, Lazarenko OP, Blackburn ML, et al. Soy protein isolate inhibits High-Fat Diet-Induced senescence pathways in osteoblasts to maintain bone acquisition in male rats [J]. Endocrinology, 2015, 156(2): 475-487.
76
Pignolo RJ, Samsonraj RM, Law SF, et al. Targeting cell senescence for the treatment of Age-Related bone loss [J]. Curr Osteoporos Rep, 2019, 17(2): 70-85.
77
Chandra A, Lagnado AB, Farr JN, et al. Targeted reduction of senescent cell burden alleviates focal Radiotherapy-Related bone loss [J]. J Bone Miner Res, 2020, 35(6): 1119-1131.
78
Le Maitre CL. Freemont a J,hoyland J A.accelerated cellular senescence in degenerate intervertebral discs:a possible role in the pathogenesis of intervertebral disc degeneration [J]. Arthritis Res Ther, 2007, 9(3): R45.
79
Zhao C, Wang L, Jiang L, et al. The cell biology of intervertebral disc aging and degeneration [J]. Ageing Res Rev, 2007, 6(3): 247-261.
80
Patil P, Dong Q, Wang D, et al. Systemic clearance of p16INK4a-positive senescent cells mitigates age-associated intervertebral disc degeneration [J]. Aging Cell, 2019, 18(3): e12927.
81
Sambrook P, Cooper C. Osteoporosis [J]. Lancet, 2006, 367(9527): 2010-2018.
82
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging [J]. Aging Cell, 2018, 17(1): e12709.
83
Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice [J]. Aging Cell, 2018, 17(3): e12741.
84
Dirckx N, Moorer MC, Clemens TL, et al. The role of osteoblasts in energy homeostasis [J]. Nat Rev Endocrinol, 2019, 15(11): 651-665.
85
Berger JM, Singh P, Khrimian L, et al. Mediation of the acute stress response by the skeleton [J]. Cell Metab, 2019, 30(5): 890-902.
86
Kim HN, Chang J, Shao L, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 May cause their decrease with age [J]. Aging Cell, 2017, 16(4): 693-703.
87
Liu X, Zhang F, Chai Y, et al. The role of bone-derived PDGF-AA in age-related pancreatic β cell proliferation and function [J]. Biochem Biophys Res Commun, 2020, 524(1): 22-27.
88
Chamouni A, Schreiweis C, Oury FB. Brain&beyond [J]. Rev Endocr Metab Disord, 2015, 16(2): 99-113.
89
Bonnet N. Bone-Derived factors: a new gateway to regulate glycemia [J]. Calcif Tissue Int, 2017, 100(2): 174-183.
[1] 杨春姝, 秦光远, 郑新宇. 碧萝芷对乳腺癌MCF-7细胞增殖、迁移和转移的影响[J]. 中华乳腺病杂志(电子版), 2019, 13(03): 165-172.
[2] 顾言阁, 石志伟, 段续东, 殷鲁旭, 张业勇, 孙华强, 李树锋, 闫新峰. Bernese髋臼周围截骨术早期手术效果的影响因素分析[J]. 中华关节外科杂志(电子版), 2022, 16(01): 8-15.
[3] 杨育晖, 李钊, 董航, 刘潼, 高忠礼. 成人发育性髋关节发育不良真臼三维形态研究及髋臼重建的处理策略[J]. 中华关节外科杂志(电子版), 2018, 12(02): 256-260.
[4] 杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.
[5] 秦朗, 赵福敏, 陈娇, 罗红, 杨帆, 田雨, 庞厚清, 何敏, 徐红, 唐英, 叶璐. 产前经腹胎儿超声诊断体外受精-胚胎移植胎儿鼻骨发育异常的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(04): 389-395.
[6] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[7] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[8] 张欢桐, 周翰, 沈新, 林星辰, 孙怡亦, 周义, 张大勇. 细胞衰老与移植疗效研究进展[J]. 中华移植杂志(电子版), 2022, 16(06): 379-383.
[9] 冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.
[10] 熊琳, 欧三桃. 慢性肾脏病的"骨-血管轴"的交互因子研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 342-346.
[11] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[12] 罗佳, 王梨名, 汪晓月, 喻芳, 陈客宏, 何娅妮, 陈佳. 胚肾发育过程中诱骗受体2表达与细胞衰老的关系[J]. 中华肾病研究电子杂志, 2022, 11(03): 126-131.
[13] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[14] 吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.
[15] 张婧, 毛根祥. 衰老机制及抗衰老研究新进展[J]. 中华老年病研究电子杂志, 2022, 09(02): 1-8.
阅读次数
全文


摘要