切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2022, Vol. 08 ›› Issue (01) : 60 -64. doi: 10.3877/cma.j.issn.2096-0263.2022.01.010

综述

抗骨质疏松药物不同给药途径研究进展
蔡林秀1, 解强1, 张曦2, 高俊3,(), 孔泳4   
  1. 1. 213003 南京中医药大学附属常州市中医医院
    2. 213003 常州市中医医院骨科
    3. 213003 常州市中医医院骨科;213003 常州市中医医院骨靶向释药系统实验室
    4. 213164 常州大学石油化工学院
  • 收稿日期:2020-06-24 出版日期:2022-02-05
  • 通信作者: 高俊
  • 基金资助:
    江苏省社会发展重点研发项目(BE2019653); 常州市卫生健康委科技项目资助(QN201721)

Development of the drug delivery approaches for osteoporosisd

Linxiu Cai1, Qiang Xie1, Xi Zhang2, Jun Gao3,(), Yong Kong4   

  1. 1. Changzhou Chinese Traditional Medicine Hospital Affiliated to Chinese Traditional Medicine University of Nanjing, Changzhou 213003, China
    2. Department of Orthopedics, Changzhou Hospital of Chinese medicine, Changzhou 213003, China
    3. Department of Orthopedics, Changzhou Hospital of Chinese medicine, Changzhou 213003, China; Bone-targeting drug delivery system laboratory, Changzhou Hospital of Chinese medicine, Changzhou 213003, China
    4. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
  • Received:2020-06-24 Published:2022-02-05
  • Corresponding author: Jun Gao
引用本文:

蔡林秀, 解强, 张曦, 高俊, 孔泳. 抗骨质疏松药物不同给药途径研究进展[J]. 中华老年骨科与康复电子杂志, 2022, 08(01): 60-64.

Linxiu Cai, Qiang Xie, Xi Zhang, Jun Gao, Yong Kong. Development of the drug delivery approaches for osteoporosisd[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2022, 08(01): 60-64.

随着老龄化社会的来临,骨质疏松症已经成为了世界范围内的主要健康问题之一。目前,临床上抗骨质疏松药物诸如双膦酸盐类、激素类、以及较新的骨细胞活性调节剂等,主要通过口服、静脉或皮下给药,这些传统方法都存在患者依从性差或生物利用度低的缺陷。为了更高效的治疗骨质疏松症及防范相关骨折风险,研究者们近年来在抗骨质疏松症的给药途径领域取得许多突破,利用纳米载体、骨靶向性基团修饰药物、被动和主动触发的储库系统都可以通过控制药物释放的速率、时间和作用部位提高治疗剂疗效、安全性及患者依从性。本文就抗骨质疏松症治疗的给药途径及新兴给药方法进行综述。

Osteoporosis have become the major public health problems worldwide in our aging society. Currently, Most of the clinically used antiresorptive and anabolic agents such bisphosphonates, asestrogen, along with newer modulators and antibodies, are primarily administered orally, intravenously, or subcutaneously. Traditional methods have defects of poor patient compliance or low bioavailability. In recent years, breakthroughs in the field of drug delivery have been made to treat osteoporosis and associated fracture risk more efficiently. The use of nano carriers, bone targeted group modified drugs, passively and active actively triggered release system can improve the efficacy and safety of therapeutic agents by controlling the rate, time andplace of drug release. This paper reviews routes of administration for treatment of osteoporosis with emphasis on emerging drug delivery routes.

表1 当前治疗骨质疏松症常用药物及给药方法[1]
图1 四环素分子结构式
1
Asafo-Adjei T, Chen AJ, Najarzadeh A, et al. Advances in controlled drug delivery for treatment of osteoporosis [J]. Curr Osteoporos Rep, 2016, 14(5): 226-238.
2
Lorentzon M. Treating osteoporosis to prevent fractures: current concepts and future developments [J]. J Intern Med, 2019, 285(4): 381-394.
3
Tan J, Fu X, Sun CG, et al. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs [J]. Osteoporos Int, 2016, 27(2): 757-767.
4
Ramachandran C, Fleisher D. Transdermal delivery of drugs for the treatment of bone diseases [J]. Adv Drug Deliv Rev, 2000, 42(3): 197-223.
5
Lee CH, Kim H, Harburg DV, et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants [J]. NPG Asia Mater, 2015, 7(11): e227.
6
Wang H, Hu ZH, Chen L, et al. [Influence of history of oral bisphosphonates on the incidence rate of fever after intravenous injection of zoledronic acid in patients with osteoporosis] [J]. Beijing Da Xue Xue Bao, 2016, 48(1): 680-682.
7
Jia Z, Zhang YJ, Chen YH, et al. Simvastatin prodrug micelles target fracture and improve healing [J]. J Control Release, 2015, 200: 23-34.
8
Posadowska U, Parizek M, Filova E, et al. Injectable nanoparticle-loaded hydrogel system for local delivery of Sodium alendronate [J]. Int J Pharm, 2015, 485(1/2): 31-40.
9
Yu SH, Drucker AM, Lebwohl M, et al. A systematic review of the safety and efficacy of systemic corticosteroids in atopic dermatitis [J]. J Am Acad Dermatol, 2018, 78(4): 733-740.e11.
10
Yun Y, Wu H, Gao J, et al. Facile synthesis of Ca(2+)-crosslinked Sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier [J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110380.
11
Zhang KP, Ding CQ, Liu XL, et al. A redox and pH dual-triggered drug delivery platform based on chitosan grafted tubular mesoporous silica [J]. Ceram Int, 2019, 45(17): 22603-22609.
12
Ding C, Wu H, Yin ZZ, et al. Disulfide-cleavage- and pH-triggered drug delivery based on a vesicle structured amphiphilic self-assembly [J]. Mater Sci Eng C Mater Biol Appl, 2020, 107: 110366.
13
Smith JR, Lamprou DA. Polymer coatings for biomedical applications:a review [J]. Transactions of the IMF, 2014, 92(1): 9-19.
14
Nancollas GH, Tang R, Phipps RJ, et al. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite [J]. Bone, 2006, 38(5): 617-627.
15
Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice [J]. Mayo Clin Proc, 2008, 83(9): 1032-1045.
16
Wang H, Xiao L, Tao J, et al. Synthesis of a bone-targeted bortezomib with in vivo anti-myeloma effects in mice [J]. Pharmaceutics, 2018, 10(3): 154-164.
17
Bulman PC,Jonathan PM,Mansfield I,et al.Synthesis of bone-targeted oestrogenic compounds for the inhibition of bone resorption [J]. Tetrahedron, 2001, 57(9): 1837-1847.
18
Bhandari KH, Newa M, Uludag H, et al. Synthesis, characterization and in vitro evaluation of a bone targeting delivery system for salmon calcitonin [J]. Int J Pharm, 2010, 394(1/2): 26-34.
19
Hirabayashi H, Takahashi T, Fujisaki J, et al. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the Osteotropic Drug Delivery System (ODDS) [J]. J Control Release, 2001, 70(1/2): 183-191.
20
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance [J]. Microbiol Mol Biol Rev, 2001, 65(2): 232-260; second page, table of contents.
21
Luginbuehl V, Meinel L, Merkle HP, et al. Localized delivery of growth factors for bone repair [J]. Eur J Pharm Biopharm, 2004, 58(2): 197-208.
22
Yamashita S, Katsumi H, Hibino N, et al. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases [J]. J Control Release, 2017, 262(262): 10-17.
23
Yun YH, Lee BK, Park K. Controlled drug delivery: historical perspective for the next Generation [J]. J Control Release, 2015, 219: 2-7.
24
Nafee N, Zewail M, Boraie N. Alendronate-loaded, biodegradable smart hydrogel: a promising injectable depot formulation for osteoporosis [J]. J Drug Target, 2018, 26(7): 563-575.
25
Bae J, Park JW. Preparation of an injectable depot system for long-term delivery of alendronate and evaluation of its anti-osteoporotic effect in an ovariectomized rat model [J]. Int J Pharm, 2015, 480(1/2): 37-47.
26
Lin K, Xia L, Li H,et al.Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics [J]. Biomaterials, 2013, 34(38): 10028-10042.
27
Muller M, Vehlow D, Torger B, et al. Adhesive drug delivery systems based on polyelectrolyte complex nanoparticles (PEC NP) for bone healing [J]. Curr Pharm Des, 2018, 24(13): 1341-1348.
28
Wang D, Miller S C, Kopečková P, et al. Bone-targeting macromolecular therapeutics[J]. Adv Drug Deliv Rev, 2005, 57(7): 1049-1076.
29
Razavi M, Fathi M, Savabi O, et al. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO [J]. J Mater Sci Mater Med, 2015, 26(5): 184.
[1] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[2] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[3] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[4] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[5] 王明, 陈萍. 地舒单抗导致颌骨骨坏死一例及文献复习[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 180-183.
[6] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[7] 张茜, 刘叶青, 康雪莹, 孙兵兵, 刘岩, 胡丽叶, 周亚茹. 血清铁蛋白与绝经后骨质疏松症的相关性分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(03): 166-171.
[8] 覃成禹, 周昊楠, 陈远明. 葛根素对绝经后骨质疏松大鼠不同部位骨骼的抗骨质疏松作用差异的研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 23-27.
[9] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[10] 雷礼辉, 李峰, 罗光平, 刘洪, 杨骐彰, 吴涛, 翁睿. 椎体CT值对原发性骨质疏松症唑来膦酸钠疗效的评价价值[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 285-289.
[11] 金万通, 薛海鹏, 周大鹏, 刘兵, 纪振钢, 马翔宇, 杨超, 张昊, 韩宁, 宗宇宁, 张咏晧, 马泽方. 3D打印结合PMMA骨水泥髓内支撑技术在老年肱骨近端骨质疏松性骨折中的应用[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 276-284.
[12] 蔡金辉, 叶浩翊, 申忱, 林良业, 刁凡登, 郭栋华, 刘志锋, 刘庆余. 椎体压缩骨折机会性筛查:常规胸部、腹部CT测量T12、L1椎体CT值的价值[J]. 中华老年骨科与康复电子杂志, 2022, 08(04): 217-223.
[13] 蔡莉萍, 燕琪慧, 郭蔚莹. TNF-α在绝经后骨质疏松症中的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(03): 274-279.
[14] 白晓辉, 张龙, 王永峰, 冯毅, 赵斌, 吕智, 徐朝健. 单侧与双侧经皮椎体成形术治疗Kummell病的疗效比较[J]. 中华老年病研究电子杂志, 2023, 10(02): 14-18.
[15] 廖才智. 丹红注射液在老年骨质疏松性髋部骨折患者术后治疗中的应用[J]. 中华老年病研究电子杂志, 2022, 09(01): 38-41.
阅读次数
全文


摘要