1 |
Lems WF, Paccou J, Zhang J, et al. Vertebral fracture: epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services [J]. Osteoporos Int, 2021, 32(3): 399-411.
|
2 |
Al Taha K, Lauper N, Bauer D E, et al. Multidisciplinary and Coordinated Management of Osteoporotic Vertebral Compression Fractures: Current State of the Art[J]. J Clin Med, 2024, 13(4):930.
|
3 |
Chen W, Lv H, Liu S, et al. National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals[J]. Lancet Glob Health, 2017, 5(8): e807-e817.
|
4 |
徐梦圆,李姿萱,宋渐石,等.降钙素受体rs1801197基因多态性与骨质疏松症相关性的Meta分析[J].中华老年骨科与康复电子杂志,2021,7(2):122-128
|
5 |
Beall DP, Olan WJ, Kakad P, et al. Economic analysis of Kiva VCF treatment system compared to balloon kyphoplasty using randomized Kiva safety and effectiveness trial (KAST) data [J]. Pain Physician, 2015, 18(3): E299-E306.
|
6 |
Johannesdottir F, Putman MS, Burnett-Bowie SAM, et al. Age-Related changes in bone density, microarchitecture, and strength in postmenopausal black and white women: the SWAN longitudinal HR-pQCT study [J]. J Bone Miner Res, 2022, 37(1): 41-51.
|
7 |
Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 2017, 88: 467-498.
|
8 |
Vaughan TJ, McCarthy CT, McNamara LM. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone [J]. J Mech Behav Biomed Mater, 2012, 12 (8): 50-62.
|
9 |
Sopon M, Oleksik V, Roman M, et al. Biomechanical study of the osteoporotic spine fracture: optical approach [J]. J Pers Med, 2021, 11(9): 907.
|
10 |
Lomelí-Rivas A, Larrinúa-Betancourt J E. [Biomechanics of the lumbar spine: a clinical approach][J]. Acta Ortop Mex, 2019, 33(3): 185-191.
|
11 |
Osterhoff G, Morgan EF, Shefelbine SJ, et al. Bone mechanical properties and changes with osteoporosis [J]. Injury, 2016, 47 Suppl 2(Suppl 2): S11-S20.
|
12 |
Auger JD, Frings N, Wu YQ, et al. Trabecular architecture and mechanical heterogeneity effects on vertebral body strength [J]. Curr Osteoporos Rep, 2020, 18(6): 716-726.
|
13 |
Jiang Y, Zhao J, Rosen C, et al. Perspectives on bone mechanical properties and adaptive response to mechanical challenge [J]. J Clin Densitom, 1999, 2(4): 423-433.
|
14 |
Gong H, Wang LZ, Fan YB, et al. Apparent- and Tissue-Level yield behaviors of L4 vertebral trabecular bone and their associations with microarchitectures [J]. Ann Biomed Eng, 2016, 44(4): 1204-1223.
|
15 |
Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone [J]. J Bone Miner Res, 2008, 23(2): 223-235.
|
16 |
Hildebrand T, Laib A, Müller R, et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus [J]. J Bone Miner Res, 1999, 14(7): 1167-1174.
|
17 |
于琼,吕思敏,崔燎, et al.辅酶Q10对环磷酰胺大鼠股骨的显微结构和生物力学的影响[J].中国药理学通报, 2015, 31(03): 421-425.
|
18 |
Kaiser J, Allaire B, Fein PM, et al. Correspondence between bone mineral density and intervertebral disc degeneration across age and sex [J]. Arch Osteoporos, 2018, 13(1): 123.
|
19 |
Wang Y, Owoc JS, Boyd SK, et al. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing [J]. Bone, 2013, 56(2): 249-254.
|
20 |
Vom Scheidt A, Grisolia Seifert EF, Pokrant C, et al. Subregional areal bone mineral density (aBMD) is a better predictor of heterogeneity in trabecular microstructure of vertebrae in young and aged women than subregional trabecular bone score (TBS) [J]. Bone, 2019, 122(5): 156-165.
|
21 |
Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength [J]. Bone, 2007, 41(6): 946-957.
|
22 |
Zhao F, Kirby M, Roy A, et al. Commonality in the microarchitecture of trabecular bone: A preliminary study [J]. Bone, 2018, 111(6): 59-70.
|
23 |
Liu XS, Bevill G, Keaveny TM, et al. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods [J]. J Biomech, 2009, 42(3): 249-256.
|
24 |
Lopes D, Martins-Cruz C, Oliveira MB, et al. Bone physiology as inspiration for tissue regenerative therapies [J]. Biomaterials, 2018, 185(12): 240-275.
|
25 |
Shi XT, Liu XS, Wang X, et al. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone [J]. Bone, 2010, 46(5): 1260-1266.
|
26 |
Fields AJ, Lee GL, Liu XS, et al. Influence of vertical trabeculae on the compressive strength of the human vertebra [J]. J Bone Miner Res, 2011, 26(2): 263-269.
|
27 |
Zhou B, Liu XS, Wang J, et al. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS) [J]. J Biomech, 2014, 47(3): 702-708.
|
28 |
Liu XS, Sajda P, Saha PK, et al. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone [J]. J Bone Miner Res, 2006, 21(10): 1608-1617.
|
29 |
Yu YE, Hu YJ, Zhou B, et al. Microstructure determines Apparent-Level mechanics despite Tissue-Level anisotropy and heterogeneity of individual plates and Rods in normal human trabecular bone [J]. J Bone Miner Res, 2021, 36(9): 1796-1807.
|
30 |
Jiang R, Liu GM, Bai HT, et al. Age-related differences in the biological parameters of vertebral cancellous bone from Chinese women [J]. Chin Med J (Engl), 2013, 126(20): 3828-3832.
|
31 |
Chen H, Shoumura S, Emura S, et al. Regional variations of vertebral trabecular bone microstructure with age and gender [J]. Osteoporos Int, 2008, 19(10): 1473-1483.
|
32 |
Gong H, Zhang M, Yeung HY, et al. Regional variations in microstructural properties of vertebral trabeculae with aging [J]. J Bone Miner Metab, 2005, 23(2): 174-180.
|
33 |
Chen HY, Kubo KY. Bone three-dimensional microstructural features of the common osteoporotic fracture sites [J]. World J Orthop, 2014, 5(4): 486-495.
|
34 |
Thomsen JS, Niklassen AS, Ebbesen EN, et al. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men [J]. Bone, 2013, 57(1): 47-55.
|
35 |
Ritzel H, Amling M, Pösl M, et al. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens [J]. J Bone Miner Res, 1997, 12(1): 89-95.
|
36 |
Thomsen JS, Ebbesen EN, Mosekilde LI. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method [J]. Bone, 2002, 31(1): 136-142.
|
37 |
雷涛,申勇.老年骨质疏松性椎体骨折若干问题的探讨[J].中华老年骨科与康复电子杂志, 2017, 3(4): 248-251.
|
38 |
Yu TM, Zhang XY, Liu JH, et al. Superior cortical screw in osteoporotic lumbar vertebrae: A biomechanics and microstructure-based study [J]. Clin Biomech (Bristol, Avon), 2018, 53(3): 14-21.
|
39 |
Roman M, Brown C, Richardson W, et al. The development of a clinical decision making algorithm for detection of osteoporotic vertebral compression fracture or wedge deformity [J]. J Man Manip Ther, 2010, 18(1): 44-49.
|
40 |
Yan JW, Liao Z, Yu YF. Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture [J]. Eur J Med Res, 2022, 27(1): 142.
|
41 |
Chappard D, Baslé MF, Legrand E, et al. New laboratory tools in the assessment of bone quality [J]. Osteoporos Int, 2011, 22(8): 2225-2240.
|
42 |
Oefner C, Riemer E, Funke K, et al. Determination of anisotropic elastic parameters from morphological parameters of cancellous bone for osteoporotic lumbar spine [J]. Med Biol Eng Comput, 2022, 60(1): 263-278.
|
43 |
Ammann P, Rizzoli R. Bone strength and its determinants [J]. Osteoporosis International, 2003, 14(3): 13-18.
|
44 |
Ramchand S K, Seeman E. The Influence of Cortical Porosity on the Strength of Bone During Growth and Advancing Age[J]. Curr Osteoporos Rep, 2018, 16(5): 561-572..
|
45 |
Pothuaud L, Barthe N, Krieg MA, et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study [J]. J Clin Densitom, 2009, 12(2): 170-176.
|
46 |
Ulivieri FM, Silva BC, Sardanelli F, et al. Utility of the trabecular bone score (TBS) in secondary osteoporosis [J]. Endocrine, 2014, 47(2): 435-448.
|
47 |
Muschitz C, Kocijan R, Haschka J, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures [J]. Bone, 2015, 79(10): 259-266.
|
48 |
Roux JP, Wegrzyn J, Boutroy S, et al. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study [J]. Osteoporos Int, 2013, 24(9): 2455-2460.
|
49 |
Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise [J]. J Clin Densitom, 2013, 16(3): 287-296.
|
50 |
Lee JE, Kim KM, Kim LK, et al. Comparisons of TBS and lumbar spine BMD in the associations with vertebral fractures according to the T-scores: A cross-sectional observation [J]. Bone, 2017, 105(12): 269-275.
|
51 |
Shevroja E, Lamy O, Kohlmeier L, et al. Use of trabecular bone score (TBS) as a complementary approach to dual-energy x-ray absorptiometry (DXA) for fracture risk assessment in clinical practice [J]. J Clin Densitom, 2017, 20(3): 334-345.
|
52 |
Hsu Y, Hsieh TJ, Ho CH, et al. Effect of compression fracture on trabecular bone score at lumbar spine [J]. Osteoporos Int, 2021, 32(5): 961-970.
|
53 |
Messina C, Rinaudo L, Cesana BM, et al. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study [J]. Osteoporosis International, 2021, 32(1): 85-91.
|
54 |
Hart NH, Nimphius S, Rantalainen T, et al. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action [J]. J Musculoskelet Neuronal Interact, 2017, 17(3): 114-139.
|
55 |
Ulivieri FM, Piodi LP, Grossi E, et al. The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: A proposal from an observational study [J]. PLoS One, 2018, 13(1): e0190477.
|
56 |
Ulivieri FM, Rebagliati GAA, Piodi LP, et al. Usefulness of bone microarchitectural and geometric DXA-derived parameters in haemophilic patients [J]. Haemophilia, 2018, 24(6): 980-987.
|
57 |
Rodari G, Scuvera G, Ulivieri FM, et al. Progressive bone impairment with age and pubertal development in neurofibromatosis type I [J]. Arch Osteoporos, 2018, 13(1): 93.
|
58 |
Singhal V, Bredella MA. Marrow adipose tissue imaging in humans [J]. Bone, 2019, 118(1): 69-76.
|
59 |
Schwartz A V. Marrow fat and bone: review of clinical findings[J]. Front Endocrinol (Lausanne), 2015, 6: 40.
|
60 |
Li XJ, Schwartz AV. MRI assessment of bone marrow composition in osteoporosis [J]. Curr Osteoporos Rep, 2020, 18(1): 57-66.
|
61 |
Woods GN, Ewing SK, Sigurdsson S, et al. Greater bone marrow adiposity predicts bone loss in older women [J]. J Bone Miner Res, 2020, 35(2): 326-332.
|
62 |
Ohlsson C, Sundh D, Wallerek A, et al. Cortical bone area predicts incident fractures independently of areal bone mineral density in older men [J]. J Clin Endocrinol Metab, 2017, 102(2): 516-524.
|
63 |
Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries [J]. Spine (Phila Pa 1976), 1983, 8(8): 817-831.
|
64 |
Hussein AI, Louzeiro DT, Unnikrishnan GU, et al. Differences in trabecular microarchitecture and simplified boundary conditions limit the accuracy of quantitative computed Tomography-Based finite element models of vertebral failure [J]. J Biomech Eng, 2018, 140(2): 0210041-02100411.
|
65 |
Gustafson HM, Melnyk AD, Siegmund GP, et al. Damage identification on vertebral bodies during compressive loading using digital image correlation [J]. Spine (Phila Pa 1976), 2017, 42(22): E1289-E1296.
|
66 |
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone [J]. J Biomech, 1998, 31(7): 601-608.
|
67 |
Homminga J, Weinans H, Gowin W, et al. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution [J]. Spine (Phila Pa 1976), 2001, 26(14): 1555-1561.
|
68 |
Cesar R, Bravo-Castillero J, Ramos RR, et al. Relating mechanical properties of vertebral trabecular bones to osteoporosis [J]. Comput Methods Biomech Biomed Engin, 2020, 23(2): 54-68.
|
69 |
Svedbom A, Ivergård M, Hernlund E, et al. Epidemiology and economic burden of osteoporosis in Switzerland [J]. Arch Osteoporos, 2014, 9(187): 187.
|
70 |
Fields AJ, Keaveny TM. Trabecular architecture and vertebral fragility in osteoporosis [J]. Curr Osteoporos Rep, 2012, 10(2): 132-140.
|
71 |
Gong H, Zhang M, Qin L, et al. Regional variations in the apparent and tissue-level mechanical parameters of vertebral trabecular bone with aging using micro-finite element analysis [J]. Ann Biomed Eng, 2007, 35(9): 1622-1631.
|
72 |
权元元,丁凯,王海程, et al.骨小梁的形态结构和生物力学性能研究进展[J].中华老年骨科与康复电子杂志, 2024, 10(2): 123-128.
|
73 |
Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis [J]. J Bone Miner Res, 2000, 15(1): 13-19.
|
74 |
McDonnell P, McHugh PE, O'Mahoney D. Vertebral osteoporosis and trabecular bone quality [J]. Ann Biomed Eng, 2007, 35(2): 170-189.
|
75 |
Wehrli FW, Gomberg BR, Saha PK, et al. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis [J]. J Bone Miner Res, 2001, 16(8): 1520-1531.
|
76 |
Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone [J]. Bone, 2000, 26(3): 291-295.
|
77 |
Laib A, Kumer JL, Majumdar S, et al. The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT [J]. Osteoporos Int, 2001, 12(11): 936-941.
|
78 |
Liu XS, Stein EM, Zhou B, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures Independent of DXA measurements [J]. J Bone Miner Res, 2012, 27(2): 263-272.
|
79 |
Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions [J]. Bone, 1993, 14(2): 173-182.
|
80 |
Odgaard A, Jensen EB, Gundersen HJ. Estimation of structural anisotropy based on volume orientation. A new concept [J]. J Microsc, 1990, 157(Pt 2): 149-162.
|
81 |
Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality [J]. Osteoporos Int, 2002, 13(2): 97-104.
|
82 |
Burr DB. Targeted and nontargeted remodeling [J]. Bone, 2002, 30(1): 2-4.
|
83 |
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains [J]. Eur J Morphol, 2005, 42(1/2): 13-21.
|
84 |
Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone [J]. Bone, 2007, 40(5): 1259-1264.
|
85 |
Wang X, Niebur GL. Microdamage propagation in trabecular bone due to changes in loading mode [J]. J Biomech, 2006, 39(5): 781-790.
|
86 |
Ruspi ML, Chehrassan M, Faldini C, et al. In vitro experimental studies and numerical modeling to investigate the biomechanical effects of surgical interventions on the spine [J]. Crit Rev Biomed Eng, 2019, 47(4): 295-322.
|
87 |
Tobert DG, Davis BJ, Annis P, et al. The impact of the lordosis distribution index on failure after surgical treatment of adult spinal deformity [J]. Spine J, 2020, 20(8): 1261-1266.
|
88 |
Fang Z, Giambini H, Zeng H, et al. Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model [J]. Tissue Eng Part A, 2014, 20(5/6): 1096-1102.
|
89 |
Edidin AA, Ong KL, Lau E, et al. Mortality risk for operated and nonoperated vertebral fracture patients in the Medicare population [J]. J Bone Miner Res, 2011, 26(7): 1617-1626.
|
90 |
Jacquot F, Letellier T, Atchabahian A, et al. Balloon reduction and cement fixation in calcaneal articular fractures: a five-year experience [J]. Int Orthop, 2013, 37(5): 905-910.
|
91 |
Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty [J]. Spine (Phila Pa 1976), 2001, 26(14): 1547-1554.
|
92 |
Berton A, Salvatore G, Giambini H, et al. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae [J]. J Spinal Cord Med, 2020, 43(1): 39-45.
|
93 |
Tang BQ, Cui LB, Chen XM, et al. Risk factors for cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: an analysis of 1456 vertebrae augmented by Low-Viscosity bone cement [J]. Spine (Phila Pa 1976), 2021, 46(4): 216-222.
|
94 |
于亮,赵刘军.骨质疏松性椎体压缩骨折手术治疗进展及穿刺并发症[J].中国骨伤,2024,37(01):3-6.
|
95 |
王建华.骨质疏松症治疗药物的分类与用药选择[J].中华老年骨科与康复电子杂志, 2019, 5(5): 297-300.
|
96 |
夏维波,余卫,王以朋, et al.原发性骨质疏松症社区诊疗指导原则[J].中国全科医学, 2019, 22(10): 1125-1132.
|
97 |
马迅,郝帅.仿生学在脊柱外科中的应用[J].中华外科杂志, 2022, 60(3): 208-212.
|
98 |
Galbusera F, Volkheimer D, Reitmaier S, et al. Pedicle screw loosening: a clinically relevant complication? [J]. Eur Spine J, 2015, 24(5): 1005-1016.
|
99 |
袁磊,陈仲强,曾岩,等.胸腰椎椎弓根螺钉内固定术后螺钉松动的研究进展[J].中国脊柱脊髓杂志, 2017, 27(8): 756-762.
|
100 |
Tong YX, Kaplan DJ, Spivak JM, et al. Three-dimensional printing in spine surgery: a review of current applications [J]. Spine J, 2020, 20(6): 833-846.
|
101 |
Gadia A, Shah K, Nene A. Emergence of Three-Dimensional printing technology and its utility in spine surgery [J]. Asian Spine J, 2018, 12(2): 365-371.
|
102 |
Perna F, Borghi R, Pilla F, et al. Pedicle screw insertion techniques: an update and review of the literature [J]. Musculoskelet Surg, 2016, 100(3): 165-169.
|
103 |
Cho W, Job AV, Chen J, et al. A review of current clinical applications of Three-Dimensional printing in spine surgery [J]. Asian Spine J, 2018, 12(1): 171-177.
|
104 |
Cecchinato R, Berjano P, Zerbi A, et al. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial [J]. Eur Spine J, 2019, 28(7): 1712-1723.
|
105 |
McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous Titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model [J]. Spine J, 2018, 18(7): 1250-1260.
|
106 |
Rosenzweig DH, Carelli E, Steffen T, et al. 3D-Printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration [J]. Int J Mol Sci, 2015, 16(7): 15118-15135.
|
107 |
Sun BB, Lian MF, Han Y, et al. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus Reconstruction [J]. Bioact Mater, 2021, 6(1): 179-190.
|
108 |
Cui XF, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology [J]. Tissue Eng Part A, 2012, 18(11/12): 1304-1312.
|
109 |
李昃鹏,薛静波. 3D打印多孔钛合金孔隙结构对骨诱导性能影响的研究进展[J].中国骨科临床与基础研究杂志, 2019, 11(6): 358-363.
|
110 |
Yang J, Cai H, Lv J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting [J]. Spine (Phila Pa 1976), 2014, 39(8): E486-E492.
|
111 |
Choy WJ, Mobbs RJ, Wilcox B, et al. Reconstruction of thoracic spine using a personalized 3D-Printed vertebral body in adolescent with T9 primary bone tumor [J]. World Neurosurg, 2017, 105(9): 1032.e13-1032.e17.
|
112 |
周驰雨,初同伟. 3D打印技术在脊柱外科中的应用进展[J].中国医学物理学杂志, 2019, 36(01): 60-64.
|
113 |
Li M, Zhao K, Ding K, et al. Titanium alloy gamma nail versus biodegradable Magnesium alloy bionic gamma nail for treating intertrochanteric fractures: a finite element analysis [J]. Orthop Surg, 2021,13(5): 1513-1520.
|
114 |
Ding K, Yang WJ, Zhu J, et al. Titanium alloy cannulated screws and biodegradable Magnesium alloy bionic cannulated screws for treatment of femoral neck fractures: a finite element analysis [J]. J Orthop Surg Res, 2021, 16(1): 511.
|
115 |
Cun YW, Dou CH, Tian SY, et al. Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis [J]. Int Orthop, 2020, 44(3): 551-559.
|
116 |
Attarilar S, Ebrahimi M, Djavanroodi F, et al. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures [J]. Int J Bioprint, 2021, 7(1): 306.
|
117 |
张英泽.老年骨质疏松性骨折的防治焦点[J].中华老年骨科与康复电子杂志, 2021, 7(1): 1.
|
118 |
Cun Y, Dou C, Tian S, et al. Traditional and bionic dynamic hip screw fixation for the treatment of intertrochanteric fracture: a finite element analysis[J]. Int Orthop, 2020, 44(3): 551-559.
|