1 |
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing [J]. Nature, 2018, 561(7721): 45-56.
|
2 |
Qiao D, Liu X, Tu R, et al. Gender-specific prevalence and influencing factors of osteopenia and osteoporosis in Chinese rural population:the Henan Rural Cohort Study [J]. BMJ Open, 2020, 10(1): e28593.
|
3 |
He Q, Zhang J. Prevalence of osteoarthritis and association between smoking patterns and osteoarthritis in China:a cross-sectional study [J]. Frontiers of Nursing, 2018, 5(2): 111-118.
|
4 |
Wan M. Gray-Gaillard E F,elisseeff J H.cellular senescence in musculoskeletal homeostasis,diseases,and regeneration [J]. Bone Res, 2021, 9(1): 41.
|
5 |
Tchkonia T, Kirkland JL. Aging,cell senescence,and chronic disease: emerging therapeutic strategies [J]. JAMA, 2018, 320(13): 1319-1320.
|
6 |
Van Deursen JM. The role of senescent cells in ageing [J]. Nature, 2014, 509(7501): 439-446.
|
7 |
He S, Sharpless NE. Senescence in health and disease [J]. Cell, 2017, 169(6): 1000-1011.
|
8 |
Muñoz-Espín D, Serrano M. Cellular senescence:from physiology to pathology [J]. Nat Rev Mol Cell Biol, 2014, 15(7): 482-496.
|
9 |
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease [J]. Int Rev Cell Mol Biol, 2019, 346: 97-128.
|
10 |
Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16ink4a-positive senescent cells delays ageing-associated disorders [J]. Nature, 2011, 479(7372): 232-236.
|
11 |
Farr J N, Khosla S. Cellular senescence in bone [J]. Bone, 2019, 121: 121-133.
|
12 |
Li CJ, Xiao Y, Sun YC, et al. Senescent immune cells release grancalcin to promote skeletal aging [J]. Cell Metab, 2021, 33(10): 1957-1973.
|
13 |
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice [J]. Nature Medicine, 2017, 23(9): 1072-1079.
|
14 |
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains [J]. Exp Cell Res, 1961, 25: 585-621.
|
15 |
Hayflick L. The Limited In Vitro Lifetime Of Human Diploid Cell Strains [J]. Exp Cell Res, 1965, 37: 614-636.
|
16 |
Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells:an emerging target for diseases of ageing [J]. Nat Rev Drug Discov, 2017, 16(10): 718-735.
|
17 |
Chen Q M. Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints [J]. Ann N Y Acad Sci, 2000, 908: 111-125.
|
18 |
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan [J]. Nature, 2016, 530(7589): 184-189.
|
19 |
Toussaint O, Dumont P, Dierick JF, et al. Stress-induced premature senescence. Essence of life, evolution, stress, and aging [J]. Ann N Y Acad Sci, 2000, 908: 85-98.
|
20 |
Dierick J, Eliaers F, Remacle J, et al. Stress-induced premature senescence and replicative senescence are different phenotypes,proteomic evidence [J]. Biochem Pharmacol, 2002, 64(5): 1011-1017.
|
21 |
Borodkina AV, Deryabin PI, Giukova AA, et al. Social Life"of senescent cells:what is SASP and why study it? [J]. Acta Naturae, 2018, 10(1): 4-14.
|
22 |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence:defining a path forward [J]. Cell, 2019, 179(4): 813-827.
|
23 |
Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence [J]. Nat Cell Biol, 2006, 8(11): 1291-1297.
|
24 |
Imai Y, Takahashi A, Hanyu A, et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence Switch [J]. Cell Rep, 2014, 7(1): 194-207.
|
25 |
Lujambio A. To clear, or not to clear (senescent cells)? That is the question [J]. Bioessays, 2016, 38 Suppl 1: S56-S64.
|
26 |
Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence [J]. Mol Biol Rep, 2016, 43(11): 1213-1220.
|
27 |
Watanabe S, Kawamoto S, Ohtani N, et al. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases [J]. Cancer Sci, 2017, 108(4): 563-569.
|
28 |
Rodier F, Coppé J, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion [J]. Nat Cell Biol, 2009, 11(8): 973-979.
|
29 |
Coppé J, Desprez P, Krtolica A, et al. The Senescence-Associated secretory phenotype:the dark side of tumor suppression [J]. Annual Review of Pathology-Mechanisms of Disease, 2010, 5(1): 99-118.
|
30 |
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA [J]. Dev Cell, 2014, 31(6): 722-733.
|
31 |
Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation [J]. Nat Cell Biol, 2015, 17(8): 1049-1061.
|
32 |
Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype [J]. Cell Metab, 2016, 23(2): 303-314.
|
33 |
Hernandez-Segura A, De Jong TV, Melov S, et al. Unmasking transcriptional heterogeneity in senescent cells [J]. Curr Biol, 2017, 27(17): 2652-2660.
|
34 |
Wiley CD, Schaum N, Alimirah F, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype [J]. Sci Rep, 2018, 8(1): 2410.
|
35 |
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity [J]. Genes Dev, 2011, 25(20): 2125-2136.
|
36 |
Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype [J]. Nat Cell Biol, 2015, 17(9): 1205-1217.
|
37 |
Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network [J]. Cell, 2008, 133(6): 1019-1031.
|
38 |
Acosta JC, O'loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence [J]. Cell, 2008, 133(6): 1006-1018.
|
39 |
Gluck S, Ablasser A. Innate immunosensing of DNA in cellular senescence [J]. Curr Opin Immunol, 2018, 56: 31-36.
|
40 |
Ito T, Teo YV, Evans SA, et al. Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone Methylation-Dependent pathways [J]. Cell Rep, 2018, 22(13): 3480-3492.
|
41 |
Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence [J]. Trends Cell Biol, 2017, 27(11): 820-832.
|
42 |
Munoz-Espin D, Canamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development [J]. Cell, 2013, 155(5): 1104-1118.
|
43 |
Storer M, Mas A, Robert-Moreno A, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning [J]. Cell, 2013, 155(5): 1119-1130.
|
44 |
Fuchs Y, Steller H. Programmed cell death in animal development and disease [J]. Cell, 2011, 147(4): 742-758.
|
45 |
Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models [J]. Growth Hormone & IGF Research, 2016, 28: 26-42.
|
46 |
Rauch F. The dynamics of bone structure development during pubertal growth [J]. J Musculoskelet Neuronal Interact, 2012, 12(1): 1-6.
|
47 |
Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling,ossification and angiogenesis during endochondral bone formation [J]. Nat Med, 1999, 5(6): 623-628.
|
48 |
Li C, Chai Y, Wang L, et al. Programmed cell senescence in skeleton during late puberty [J]. Nat Commun, 2017, 8(1): 1312.
|
49 |
Chen JR, Lazarenko OP, Zhao H, et al. Maternal obesity impairs skeletal development in adult offspring [J]. J Endocrinol, 2018, 239(1): 33-47.
|
50 |
Chen JR, Lazarenko OP, Blackburn ML, et al. Maternal obesity programs senescence signaling and glucose metabolism in Osteo-Progenitors from rat and human [J]. Endocrinology, 2016, 157(11): 4172-4183.
|
51 |
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis [J]. Lancet, 2019, 393(10182): 1745-1759.
|
52 |
Martin JA, Brown TD, Heiner AD, et al. Chondrocyte senescence, joint loading and osteoarthritis [J]. Clin Orthop Relat Res, 2004 (427 Suppl): S96-S103.
|
53 |
Martin JA, Brown T, Heiner A, et al. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence [J]. Biorheology, 2004, 41(3/4): 479-491.
|
54 |
Price JS, Waters JG, Darrah C, et al. The role of chondrocyte senescence in osteoarthritis [J]. Aging Cell, 2002, 1(1): 57-65.
|
55 |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment [J]. Nat Med, 2017, 23(6): 775-781.
|
56 |
Jeon OH, David N, Campisi J, et al. Senescent cells and osteoarthritis:a painful connection [J]. J Clin Invest, 2018, 128(4): 1229-1237.
|
57 |
Diekman BO, Sessions GA, Collins JA, et al. Expression of p16 (INK)(4a)is a biomarker of chondrocyte aging but does not cause osteoarthritis [J]. Aging Cell, 2018, 17(4): e12771.
|
58 |
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis [J]. Nat Med, 2013, 19(6): 704-712.
|
59 |
Tominaga K, Suzuki H I. TGF-beta Signaling in Cellular Senescence and Aging-Related Pathology [J]. Int J Mol Sci, 2019, 20(20): 5002.
|
60 |
Su W, Liu G, Mohajer B, et al. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2 [J]. Elife, 2022, 26(11): 79773.
|
61 |
Ushiyama T, Chano T, Inoue K, et al. Cytokine production in the infrapatellar fat pad:another source of cytokines in knee synovial fluids [J]. Ann Rheum Dis, 2003, 62(2): 108-112.
|
62 |
Benito MJ, Veale DJ, Fitzgerald O, et al. Synovial tissue inflammation in early and late osteoarthritis [J]. Ann Rheum Dis, 2005, 64(9): 1263-1267.
|
63 |
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis:now and the future [J]. Lancet, 2011, 377(9773): 1276-1287.
|
64 |
Seeman E. Pathogenesis of bone fragility in women and men [J]. Lancet, 2002, 359(9320): 1841-1850.
|
65 |
夏维波.骨质疏松症的现状和防治策略[J].中国医学前沿杂志:电子版, 2015, 7(10): 1-3.
|
66 |
倪乙洪,王正博,刘权,等.细胞衰老在老年骨质疏松症防治中的研究进展[J].中国骨质疏松杂志, 2020, 26(8): 1207-1211.
|
67 |
Abrahamsen B, Van Staa T, Ariely R, et al. Excess mortality following hip fracture: a systematic epidemiological review [J]. Osteoporos Int, 2009, 20(10): 1633-1650.
|
68 |
Bussian TJ, Aziz A, Meyer CF, et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline [J]. Nature, 2018, 562(7728): 578-582.
|
69 |
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age [J]. Nat Med, 2018, 24(8): 1246-1256.
|
70 |
Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment [J]. J Bone Miner Res, 2016, 31(11): 1920-1929.
|
71 |
Farr J N, Xu M, Weivoda M M, et al. Targeting cellular senescence prevents age-related bone loss in micev[J]. Nat Med, 2017, 23(9): 1072-1079.
|
72 |
Kim HN, Chang J, Iyer S, et al. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice [J]. Aging Cell, 2019, 18(3): e12923.
|
73 |
Liu X, Chai Y, Liu G, et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis [J]. Nat Commun, 2021, 12(1): 1832.
|
74 |
Farr JN, Rowsey JL, Eckhardt BA, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis:evidence in young adult mice and older humans [J]. J Bone Miner Res, 2019, 34(8): 1407-1418.
|
75 |
Chen J, Lazarenko OP, Blackburn ML, et al. Soy protein isolate inhibits High-Fat Diet-Induced senescence pathways in osteoblasts to maintain bone acquisition in male rats [J]. Endocrinology, 2015, 156(2): 475-487.
|
76 |
Pignolo RJ, Samsonraj RM, Law SF, et al. Targeting cell senescence for the treatment of Age-Related bone loss [J]. Curr Osteoporos Rep, 2019, 17(2): 70-85.
|
77 |
Chandra A, Lagnado AB, Farr JN, et al. Targeted reduction of senescent cell burden alleviates focal Radiotherapy-Related bone loss [J]. J Bone Miner Res, 2020, 35(6): 1119-1131.
|
78 |
Le Maitre CL. Freemont a J,hoyland J A.accelerated cellular senescence in degenerate intervertebral discs:a possible role in the pathogenesis of intervertebral disc degeneration [J]. Arthritis Res Ther, 2007, 9(3): R45.
|
79 |
Zhao C, Wang L, Jiang L, et al. The cell biology of intervertebral disc aging and degeneration [J]. Ageing Res Rev, 2007, 6(3): 247-261.
|
80 |
Patil P, Dong Q, Wang D, et al. Systemic clearance of p16INK4a-positive senescent cells mitigates age-associated intervertebral disc degeneration [J]. Aging Cell, 2019, 18(3): e12927.
|
81 |
Sambrook P, Cooper C. Osteoporosis [J]. Lancet, 2006, 367(9527): 2010-2018.
|
82 |
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging [J]. Aging Cell, 2018, 17(1): e12709.
|
83 |
Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice [J]. Aging Cell, 2018, 17(3): e12741.
|
84 |
Dirckx N, Moorer MC, Clemens TL, et al. The role of osteoblasts in energy homeostasis [J]. Nat Rev Endocrinol, 2019, 15(11): 651-665.
|
85 |
Berger JM, Singh P, Khrimian L, et al. Mediation of the acute stress response by the skeleton [J]. Cell Metab, 2019, 30(5): 890-902.
|
86 |
Kim HN, Chang J, Shao L, et al. DNA damage and senescence in osteoprogenitors expressing Osx1 May cause their decrease with age [J]. Aging Cell, 2017, 16(4): 693-703.
|
87 |
Liu X, Zhang F, Chai Y, et al. The role of bone-derived PDGF-AA in age-related pancreatic β cell proliferation and function [J]. Biochem Biophys Res Commun, 2020, 524(1): 22-27.
|
88 |
Chamouni A, Schreiweis C, Oury FB. Brain&beyond [J]. Rev Endocr Metab Disord, 2015, 16(2): 99-113.
|
89 |
Bonnet N. Bone-Derived factors: a new gateway to regulate glycemia [J]. Calcif Tissue Int, 2017, 100(2): 174-183.
|