切换至 "中华医学电子期刊资源库"

中华老年骨科与康复电子杂志 ›› 2018, Vol. 04 ›› Issue (02) : 118 -124. doi: 10.3877/cma.j.issn.2096-0263.2018.02.010

所属专题: 文献

综述

双膦酸盐治疗股骨非典型性骨折的研究进展
邢浩1, 刘强2,(), 吴斗2, 郜振武2, 梁伟2, 苏雅珍2, 耿亚会2   
  1. 1. 030032 太原,山西医科大学
    2. 030032 太原,山西大医院骨科
  • 收稿日期:2017-04-06 出版日期:2018-04-05
  • 通信作者: 刘强
  • 基金资助:
    山西省基础研究项目(2015091002-0105)

Bisphosphonates and atypical femur fractures femur

Hao Xing1, Qiang Liu2,(), Dou Wu2, Zhengwu Gao2, Wei Liang2, Yazhen Su2, Yahui Geng2   

  1. 1. Shanxi Medical University, Taiyuan 030001, China
    2. Department of Orthopedic Surgery, Shanxi Da Yi Hospital, Taiyuan 030032, China
  • Received:2017-04-06 Published:2018-04-05
  • Corresponding author: Qiang Liu
  • About author:
    Corresponding author: Liu Qiang, Email:
引用本文:

邢浩, 刘强, 吴斗, 郜振武, 梁伟, 苏雅珍, 耿亚会. 双膦酸盐治疗股骨非典型性骨折的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2018, 04(02): 118-124.

Hao Xing, Qiang Liu, Dou Wu, Zhengwu Gao, Wei Liang, Yazhen Su, Yahui Geng. Bisphosphonates and atypical femur fractures femur[J/OL]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2018, 04(02): 118-124.

骨质疏松症为一种有较高发病率和死亡率的病症,会导致患者骨折风险增加。双膦酸盐已在许多大型临床试验中被证明可降低骨质疏松性骨折的风险,特别是阿仑膦酸钠已广泛成功地用于骨质疏松症的治疗。双膦酸盐可抑制骨吸收(抑制破骨细胞活性),同时也可引起骨小梁微损伤的积累或胶原纤维的老化。长期使用双膦酸盐会导致股骨非典型性骨折(AFF)风险增高。本文综述了与双膦酸盐相关AFF的发病机制和管理相关的6个主题,包括双膦酸盐作用机理、双膦酸盐相关AFF的发病机制、AFF的危险因素、双膦酸盐相关AFF的预防、双膦酸盐相关AFF的手术治疗、双膦酸盐相关AFF的医疗管理。

Osteoporosis is a condition associated with significant morbidity and mortality, resulting increased risk of fractures. Bisphosphonates have been shown to reduce the risk of osteoporotic fracture in numerous large clinical trials, particularly alendronate sodium have been extensively and successfully used for the treatment of osteoporosis. As a result of inhibition of bone resorption (through the inhibition of osteoclasts activity), bisphosphonates may cause accumulation of trabecular microdamage or perhaps contribute to the aging of collagen fibers. Long-term use of bisphosphonates causes an increased risk of atypical femoral fractures (AFF). Six broad themes related to the pathogenesis and management of bisphosphonate-related AFFs are presented in this article and including mechanism of bisphosphonates action, pathogenesis of bisphosphonate-related AFF, risk factors for AFF, preventing bisphosphonate-related AFF, surgical management of bisphosphonate-related AFF and medical management of bisphosphonaterelated AFF.

1
Ioannidis G, Papaioannou A, Hopman WM, et al. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study [J]. CMAJ, 2009, 181(5): 265-271.
2
Papaioannou A, Kennedy CC, Ioannidis G, et al. The impact of incident fractures on health-related quality of Life: 5 years of data from the Canadian Multicentre Osteoporosis Study [J]. Osteoporos Int, 2009, 20(5): 703-714.
3
Haentjens P, Magaziner J, Colón-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men [J]. Ann Intern Med, 2010, 152(6): 380-390.
4
Haleem S, Lutchman L, Mayahi R, et al. Mortality following hip fracture: trends and geographical variations over the last 40 years [J]. Injury, 2008, 39(10): 1157-1163.
5
Shane E. Evolving data about subtrochanteric fractures and bisphosphonates [J]. N Engl J Med, 2010, 362(19): 1825-1827.
6
Bilezikian JP. Efficacy of bisphosphonates in reducing fracture risk in postmenopausal osteoporosis [J]. Am J Med, 2009, 122(2 Suppl): S14-S21.
7
Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures [J]. Lancet, 1996, 348(941): 1535-1541.
8
Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group [J]. J Clin Endocrinol Metab, 2000, 85(11): 4118-4124.
9
Bone HG, Hosking D, Devogelaer JP, et al. Ten years'experience with alendronate for osteoporosis in postmenopausal women [J]. N Engl J Med, 2004, 350(12): 1189-1199.
10
Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis [J]. N Engl J Med, 2007, 356(18): 1809-1822.
11
Chrischilles EA, Dasbach EJ, Rubenstein LM, et al. The effect of alendronate on fracture-related healthcare utilization and costs: the fracture intervention trial [J]. Osteoporos Int, 2001, 12(8): 654-660.
12
Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial [J]. JAMA, 1999, 280(24): 2077-2082.
13
Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs [J]. Am J Med, 2002, 112(4): 281-289.
14
Eastell R, Lang T, Boonen S, et al. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial [J]. Osteoporos Int, 2010, 21(7): 1277-1285.
15
Quandt SA, Thompson DE, Schneider DL, et al. Effect of alendronate on vertebral fracture risk in women with bone mineral density T scores of -1.6 to -2.5 at the femoral neck: The Fracture Intervention Trial [J]. Mayo Clin Proc, 2005, 80(3): 343-349.
16
Schwartz AV, Bauer DC, Cummings SR, et al. Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial [J]. J Bone Miner Res, 2010, 25(5): 976-982.
17
Cosman F. Treatment of osteoporosis and prevention of new fractures: role of intravenously administered bisphosphonates [J]. Endocr Pract, 2009, 15(5): 483-493.
18
Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research [J]. J Bone Miner Res, 2010, 25(11): 2267-2294.
19
Wells G, Cranney A, Peterson J, et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women [J]. Cochrane Database Syst Rev, 2008, 1: CD004523.
20
Allen CS, Yeung JH, Vandermeer B, et al. Bisphosphonates for steroid-induced osteoporosis [J]. Cochrane Database of Syst Rev, 2016, 10: CD001347.
21
Wells GA, Cranney A, Peterson J, et al. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women [J]. Cochrane Database Syst Rev, 2008 (1): CD001155.
22
Khosla S. Increasing options for the treatment of osteoporosis [J]. N Engl J Med, 2009, 361(8): 818-820.
23
Cao Y, Mori S, Mashiba T, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats [J]. J Bone Miner Res, 2002, 17(12): 2237-2246.
24
Isaacs JD, Shidiak L, Harris IA, et al. Femoral insufficiency fractures associated with prolonged bisphosphonate therapy [J]. Clin Orthop Relat Res, 2010, 468(12): 3384-3392.
25
Mashiba T, Hui S, Turner CH, et al. Bone remodeling at the iliac crest can predict the changes in remodeling dynamics, microdamage accumulation, and mechanical properties in the lumbar vertebrae of dogs [J]. Calcif Tissue Int, 2005, 77(3): 180-185.
26
Mashiba T, Mori S, Burr DB, et al. The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib [J]. J Bone Miner Metab, 2005, 23(Suppl): 36-42.
27
Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro [J]. Proc Natl Acad Sci U S A, 1999, 96(1): 133-138.
28
Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras [J]. J Bone Miner Res, 1998, 13(4): 581-589.
29
Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy [J]. J Clin Endocrinol Metab, 2005, 90(3): 1294-1301.
30
Hsu JH, Tsai MY, Chen CK, et al. Bisphosphonate-related atypical femoral fracture [J]. Kaohsiung J Med Sci, 2013, 29(6): 345-346.
31
Porrino JA, Kohl CA, Taljanovic M, et al. Diagnosis of proximal femoral insufficiency fractures in patients receiving bisphosphonate therapy [J]. AJR Am J Roentgenol, 2010, 194(4): 1061-1064.
32
Ali T, Jay RH. Spontaneous femoral shaft fracture after long-term alendronate [J]. Age Ageing, 2009, 38(5): 625-626.
33
Sayed-Noor AS, Sjödén GO. Case reports: two femoral insufficiency fractures after long-term alendronate therapy [J]. Clin Orthop Relat Res, 2009, 467(7): 1921-1926.
34
Chan SS, Rosenberg ZS, Chan K, et al. Subtrochanteric femoral fractures in patients receiving long-term alendronate therapy: imaging features [J]. AJR Am J Roentgenol, 2010, 194(6): 1581-1586.
35
Schilcher J, Aspenberg P. Incidence of stress fractures of the femoral shaft in women treated with bisphosphonate [J]. Acta Orthop, 2009, 80(4): 413-415.
36
Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research [J]. J Bone Miner Res, 2014, 29(1): 1-23.
37
Fleisch H, Russell RG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo [J]. Science, 1969, 165(3899): 1262-1264.
38
Fleisch H. Bisphosphonates--history and experimental basis [J]. Bone, 1987, 8(Suppl 1): S23-S28.
39
Boonekamp PM, Van Der Wee-Pals LJ, Wijk-Van WM, et al. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix [J]. Bone Miner, 1986, 1(1): 27-39.
40
Flanagan AM, Chambers TJ. Dichloromethylenebisphosphonate (Cl2MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated bone [J]. Bone Miner, 1989, 6(1): 33-43.
41
Carano A, Teitelbaum SL, Konsek JD, et al. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro [J]. J Clin Invest, 1990, 85(2): 456-461.
42
Lowik CW, Van Der Pluijm G, Van Der Wee-Pals LJ, et al. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts [J]. J Bone Miner Res, 1988, 3(2): 185-192.
43
Cecchini MG, Felix R, Fleisch H, et al. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages [J]. J Bone Miner Res, 1987, 2(2): 135-142.
44
Hughes DE, Macdonald BR, Russell RG, et al. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow [J]. J Clin Invest, 1989, 83(6): 1930-1935.
45
Papapoulos SE, Hoekman K, Löwik CW, et al. Application of an in vitro model and a clinical protocol in the assessment of the potency of a new bisphosphonate [J]. J Bone Miner Res, 1989, 4(5): 775-781.
46
Cecchini MG, Fleisch H. Bisphosphonates in vitro specifically inhibit, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage [J]. J Bone Miner Res, 1990, 5(10): 1019-1027.
47
Masarachia P, Weinreb M, Balena R, et al. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones [J]. Bone, 1996, 19(3): 281-290.
48
Schmidt A, Rutledge SJ, Endo N, et al. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate [J]. Proc Natl Acad Sci U S A, 1996, 93(7): 3068-3073.
49
Dunford JE, Thompson K, Coxon FP, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates [J]. J Pharmacol Exp Ther, 2001, 296(2): 235-242.
50
Suri S, Mönkkönen J, Taskinen M, et al. Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of bisphosphonate-induced gastrointestinal toxicity [J]. Bone, 2001, 29(4): 336-343.
51
Fisher JE, Rodan GA, Reszka AA. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway [J]. Endocrinology, 2000, 141(12): 4793-4796.
52
Bergstrom JD, Bostedor RG, Masarachia PJ, et al. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase [J]. Arch Biochem Biophys, 2000, 373(1): 231-241.
53
Rodan GA, Reszka AA. Bisphosphonate mechanism of action [J]. Curr Mol Med, 2002, 2(6): 571-577.
54
Reszka AA, Rodan GA. Nitrogen-containing bisphosphonate mechanism of action [J]. Mini Rev Med Chem, 2004, 4(7): 711-719.
55
Frith JC, Mönkkönen J, Auriola S, et al. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis [J]. Arthritis Rheum, 2001, 44(9): 2201-2210.
56
Lehenkari PP, Kellinsalmi M, Näpänkangas JP, et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite [J]. Mol Pharmacol, 2002, 61(5): 1255-1262.
57
Schilcher J, Michaëlsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft [J]. N Engl J Med, 2011, 364(18): 1728-1737.
58
Saleh A, Hegde VV, Potty AG, et al. Bisphosphonate therapy and atypical fractures [J]. Orthop Clin North Am, 2013, 44(2): 137-151.
59
Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment [J]. J Bone Miner Res, 2007, 22(11): 1759-1765.
60
Allen MR, Iwata K, Phipps R, et al. Alterations in canine vertebral bone turnover,microdamage accumulation,and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate [J]. Bone, 2006, 39(4): 872-879.
61
Gedmintas L, Solomon DH, Kim SC. Bisphosphonates and risk of subtrochanteric, femoral shaft, and atypical femur fracture: a systemic review and meta-analysis [J]. J Bone Miner Res, 2013, 28(8): 1729-1737.
62
Allen MR, Iwata K, Sato M, et al. Raloxifene enhances vertebral mechanical properties Independent of bone density [J]. Bone, 2006, 39(5): 1130-1135.
63
Komatsubara S, Mori S, Mashiba T, et al. Suppressed bone turnover by long-term bisphosphonate treatment accumulates microdamage but maintains intrinsic material properties in cortical bone of dog rib [J]. J Bone Miner Res, 2004, 19(6): 999-1005.
64
Brennan O, Kennedy OD, Lee TC, et al. Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis [J]. J Orthop Res, 2011, 29(3): 419-424.
65
Stepan JJ, Burr DB, Pavo I, et al. Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis [J]. Bone, 2007, 41(3): 378-385.
66
Donnelly E, Meredith DS, Nguyen JT, et al. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures [J]. J Bone Miner Res, 2012, 27(3): 672-678.
67
Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women [J]. Osteoporos Int, 2009, 20(5): 793-800.
68
Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone [J]. Bone, 2001, 28(2): 195-201.
69
Tang SY, Allen MR, Phipps R, et al. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate [J]. Osteoporos Int, 2009, 20(6): 887-894.
70
Saito M, Mori S, Mashiba T, et al. Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs [J]. Osteoporos Int, 2008, 19(9): 1343-1354.
71
Franceschetti P, Bondanelli M, Caruso G, et al. Risk factors for development of atypical femoral fractures in patients on long-term oral bisphosphonate therapy [J]. Bone, 2013, 56(2): 426-431.
72
Taormina DP, Marcano AI, Karia R, et al. Symptomatic atypical femoral fractures are related to underlying hip geometry [J]. Bone, 2014, 63: 1-6.
73
Whitaker M, Guo J, Kehoe T, et al. Bisphosphonates for osteoporosis--where do we go from here? [J]. N Engl J Med, 2012, 366(22): 2048-2051.
74
Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial [J]. JAMA, 2006, 296(24): 2927-2938.
75
Black DM, Reid IR, Boonen S, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT) [J]. J Bone Miner Res, 2012, 27(2): 243-254.
76
Black DM, Bauer DC, Schwartz AV, et al. Continuing bisphosphonate treatment for osteoporosis - for whom and for how long? [J]. N Engl J Med, 2012, 366(22): 2051-2053.
77
Egol KA, Park JH, Rosenberg ZS, et al. Healing delayed but generally reliable after bisphosphonate-associated complete femur fractures treated with IM nails [J]. Clin Orthop Relat Res, 2014, 472(9): 2728-2734.
78
Das De S, Setiobudi T, Shen L, et al. A rational approach to management of alendronate-related subtrochanteric fractures [J]. J Bone Joint Surg Br, 2010, 92(5): 679-686.
79
Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate [J]. N Engl J Med, 2008, 358(12): 1304-1306.
80
Goh SK, Yang KY, Koh JS, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution [J]. J Bone Joint Surg Br, 2007, 89(3): 349-353.
81
Kwek EB, Goh SK, Koh JS, et al. An emerging pattern of subtrochanteric stress fractures: A long-term complication of alendronate therapy? [J]. Injury, 2008, 39(2): 224-231.
82
Lo JC, Huang SY, Lee GA, et al. Clinical correlates of atypical femoral fracture [J]. Bone, 2012, 51(1): 181-184.
83
Koh JS, Goh SK, Png MA, et al. Femoral cortical stress lesions in Long-Term bisphosphonate therapy: a herald of impending fracture? [J]. J Orthop Trauma, 2010, 24(2): 75-81.
84
Dell R, Greene D, Tran D. Stopping bisphosphonate treatment decreases the risk of having a second atypical femur fracture. Read at the annual meeting of the American Academy of Orthopaedic Surgeons, San Francisco, 2012.
85
Khan SA, Kanis JA, Vasikaran S, et al. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis [J]. J Bone Miner Res, 1997, 12(10): 1700-1707.
86
Schilcher J, Koeppen V, Aspenberg P, et al. Risk of atypical femoral fracture during and after bisphosphonate use [J]. N Engl J Med, 2014, 371(10): 974-976.
87
Silverman SL, Kupperman ES, Bukata SV, et al. Fracture healing: a consensus report from the International Osteoporosis Foundation Fracture Working Group [J]. Osteoporos Int, 2016, 27(7): 2197-2206.
88
Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials [J]. JAMA, 2005, 293(18): 2257-2264.
89
Tang BM, Eslick GD, Nowson C, et al. Use of Calcium or Calcium in combination with vitamin D supplementation to prevent fractures and bone loss in People aged 50 years and older: a meta-analysis [J]. Lancet, 2007, 370(9588): 657-666.
90
Holick MF. Optimal vitamin D status for the prevention and treatment of osteoporosis [J]. Drugs Aging, 2007, 24(12): 1017-1029.
91
Heaney RP, Davies KM, Chen TC, et al. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol [J]. Am J Clin Nutr, 2003, 77(1): 204-210.
92
Ettinger B, San Martin J, Crans G, et al. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate [J]. J Bone Miner Res, 2004, 19(5): 745-751.
93
Molvik H, Khan W. Bisphosphonates and their influence on fracture healing: a systematic review [J]. Osteoporos Int, 2015, 26(4):1251-1260.
94
Gomberg SJ, Wustrack RL, Napoli NA, et al. Teriparatide, vitamin D, and Calcium healed bilateral subtrochanteric stress fractures in a postmenopausal Woman with a 13-Year history of continuous alendronate therapy [J]. J Clin Endocrinol Metab, 2011, 96(6): 1627-1632.
95
Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures [J]. J Bone Miner Res, 1999, 14(6): 960-968.
96
Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone [J]. Acta Orthop Scand, 2001, 72(3): 304-307.
97
Skripitz R, Andreassen TT, Aspenberg P. Parathyroid hormone (1-34) increases the density of rat cancellous bone in a bone chamber. A dose-response study [J]. J Bone Joint Surg Br, 2000, 82(1): 138-141.
98
Zanchetta JR, Bogado CE, Ferretti JL, et al. Effects of teriparatide [recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis [J]. J Bone Miner Res, 2003, 18(3): 539-543.
99
Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, Double-Blind study of 102 postmenopausal women with distal radial fractures [J]. J Bone Miner Res, 2010, 25(2): 404-414.
100
Peichl P, Holzer LA, Maier R, et al. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women [J]. J Bone Joint Surg Am, 2011, 93(17): 1583-1587.
101
Einhorn TA, Bogdan Y, Tornetta P. Bisphosphonate-associated fractures of the femur: pathophysiology and treatment [J]. J Orthop Trauma, 2014, 28(7): 433-438.
[1] 李焕玺, 何淳诺, 田志敏, 周胜虎, 吴昊越, 张浩强. 全膝关节置换术后股骨远端假体周围骨折治疗现状[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 630-637.
[2] 唐小花, 孙建霞, 王君, 王美青. 预测老年股骨粗隆间骨折术后并发症的列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2022, 16(06): 677-682.
[3] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[4] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[5] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[6] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[7] 倪鑫淼, 王磊, 王潇, 陈志远, 翁小东, 刘修恒. 前列腺癌患者骨保护现状及临床用药进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 191-195.
[8] 宋红霞, 杨英, 陈芳. 老年COPD患者并发骨质疏松症相关危险因素的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 895-898.
[9] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[10] 冉仁国, 罗政, 廖鑫, 张付民. 低频脉冲电磁场对骨质疏松性胸腰椎骨折内固定术后康复的促进作用[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(01): 39-45.
[11] 张茜, 刘叶青, 康雪莹, 孙兵兵, 刘岩, 胡丽叶, 周亚茹. 血清铁蛋白与绝经后骨质疏松症的相关性分析[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(03): 166-171.
[12] 覃成禹, 周昊楠, 陈远明. 葛根素对绝经后骨质疏松大鼠不同部位骨骼的抗骨质疏松作用差异的研究[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(01): 23-27.
[13] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[14] 邸文佳, 牛爱原. 基于东亚人群的肝硬化与骨质疏松症相关性研究[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 40-44.
[15] 白晓辉, 张龙, 王永峰, 冯毅, 赵斌, 吕智, 徐朝健. 单侧与双侧经皮椎体成形术治疗Kummell病的疗效比较[J/OL]. 中华老年病研究电子杂志, 2023, 10(02): 14-18.
阅读次数
全文


摘要